Publications by authors named "Sonoko Atsumi"

We have previously identified Ertredin (3-(2-amino-5-bromophenyl) quinoxalin-2(1H)-one) as a compound that suppresses 3D spheroid formation and tumorigenesis in NIH3T3 cells induced by variant III () transduction. One of its targets has been shown to be NDUFA12 (NADH Dehydrogenase (Ubiquinone) 1 Alpha Subcomplex Subunit 12), a component protein of oxidative phosphorylation complex I. In this report, we compared the growth inhibitory activity of Ertredin with its methylated analogue 7MeERT (3-(2-amino-5-bromophenyl)-7-methylquinoxalin-2(1H)-one) on human cancer cells.

View Article and Find Full Text PDF

Many attempts have been made to develop new agents that target EGFR mutants or regulate downstream factors in various cancers. Cell-based screening showed that a natural small molecule, Ertredin, inhibited the growth of EGFRvIII mutant cancer cells. Previous studies have shown that Ertredin effectively inhibits anchorage-independent 3D growth of sphere-forming cells transfected with EGFRvIII mutant cDNA.

View Article and Find Full Text PDF

A series of analogs of vegfrecine, a natural quinone vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitor, was synthesized via oxidative amination of 2,5-dihydroxybenzamide with functionalized arylamine followed by ammonolysis and substitution of the quinone ring. The inhibitory activities of the analogs against the VEGFR-1 and -2 tyrosine kinases were assayed in vitro with the aim to identify a compound suitable to treat cancer and inflammatory diseases. Alterations of the functionality of the phenyl group, substitution of the quinone ring, and oxidative cyclization of the 1-carboxamide-2-aminoquinone moiety to form an isoxazole quinone ring were examined.

View Article and Find Full Text PDF

Microbial metabolites have attracted increasing interest as a source of therapeutics and as probes for biological mechanisms. New microbial metabolites and derivatives targeted at inflammation and bone disease therapy have been identified by focusing on prostaglandin release, osteoblast differentiation and immune cell functions. These modulators of inflammatory processes and bone disease contribute to our understanding of biological mechanisms and support identification of the therapeutic potential of drug lead candidates.

View Article and Find Full Text PDF

Thanks to the pioneering work done by Professor Hamao Umezawa, bioactive compounds have been used in treatment of several diseases including cancer. In this review, we discuss our work, which focuses on developing new candidates for anti-tumor drugs by screening for bioactive natural compounds in microbial cultures using unique experimental systems. We summarize our recent progress including the following: (1) small-molecule modulators of tumor-stromal cell interactions, (2) inhibitors of three-dimensional spheroid formation of cancer cells, (3) multi-cancer cell panel screening and (4) new experimental animal models for cancer metastasis.

View Article and Find Full Text PDF

Background: EGFRvIII is a mutant form of the epidermal growth factor receptor gene (EGFR) that lacks exons 2-7. The resulting protein does not bind to ligands and is constitutively activated. The expression of EGFRvIII is likely confined to various types of cancer, particularly glioblastomas.

View Article and Find Full Text PDF

A new inhibitor of VEGF receptor tyrosine kinases, vegfrecine (1), was isolated from the culture broth of Streptomyces sp. MK931-CF8. The molecular structure of 1 was determined by NMR and MS analysis combined with synthesis.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Sonoko Atsumi"

  • - Sonoko Atsumi's recent research primarily investigates novel anticancer compounds, notably the natural product Ertredin, which demonstrates significant inhibitory effects on cancer cell proliferation, particularly in cells with the EGFRvIII mutation.
  • - The studies reveal that Ertredin targets NDUFA12, a vital component in oxidative phosphorylation, enhancing the drug's anticancer activity compared to its methylated derivative, 7MeERT, against human cancer cells.
  • - Additionally, Atsumi has explored structure-activity relationships of vegfrecine analogs, potential novel inhibitors of VEGFR tyrosine kinases, emphasizing the development of new bioactive compounds for both cancer therapy and inflammatory disease treatment.