In mammalian hearing, type-I afferent auditory nerve fibers comprise the basis of the afferent auditory pathway. They are connected to inner hair cells of the cochlea via specialized ribbon synapses. Auditory nerve fibers of different physiological types differ subtly in their synaptic location and morphology.
View Article and Find Full Text PDFPure-tone audiograms often poorly predict elderly humans' ability to communicate in everyday complex acoustic scenes. Binaural processing is crucial for discriminating sound sources in such complex acoustic scenes. The compromised perception of communication signals presented above hearing threshold has been linked to both peripheral and central age-related changes in the auditory system.
View Article and Find Full Text PDFThe loss of ribbon synapses connecting inner hair cells and afferent auditory nerve fibers is assumed to be one cause of age-related hearing loss. The most common method for detecting the loss of ribbon synapses is immunolabeling because it allows for quantitative sampling from several tonotopic locations in an individual cochlea. However, the structures of interest are buried deep inside the bony cochlea.
View Article and Find Full Text PDFNeuropeptide Y (NPY) is a 36-amino acid neuropeptide that is widely expressed in the central nervous system, including the cerebral cortex, nucleus accumbens (NAc) and hypothalamus. We previously analyzed the behavior of transgenic mice exclusively expressing an unedited RNA isoform of the 5-HT receptor. These mice showed decreased NPY gene expression in the NAc and exhibited behavioral despair, suggesting that NAc NPY neurons may be involved in mood disorder; however, their role in this behavior remained unknown.
View Article and Find Full Text PDF