Publications by authors named "Sonner P"

Core concepts, or overarching principles that identify patterns in processes and phenomena, provide a framework for organizing facts and understanding. Core concepts have existed for many years in some life science disciplines, including biology, microbiology, and physiology, yet have only recently been published for neuroscience through a multi-year community-derived project which identified the following neuroscience core concepts: Communication Modalities, Emergence, Evolution, Gene-Environment Interactions, Information Processing, Nervous System Functions, Plasticity, and Structure-Function Relationship. The current phase of the core concepts work involves two arms: utilizing and "unpacking.

View Article and Find Full Text PDF

Core concepts provide a framework for organizing facts and understanding in neuroscience higher education curricula. Core concepts are overarching principles that identify patterns in neuroscience processes and phenomena and can be used as a foundational scaffold for neuroscience knowledge. The need for community-derived core concepts is pressing, because both the pace of research and number of neuroscience programs are rapidly expanding.

View Article and Find Full Text PDF

Neuroscience curricula vary widely across higher education institutions due to the lack of an accrediting body or a set of unified educational concepts or outcomes. Each institution has developed a unique set of fundamental knowledge, topical subdisciplines, and core competencies to be delivered in a neuroscience program. Core concepts would provide neuroscience departments and programs with a generally agreed upon set of overarching principles that organize knowledge and can be applied to all sub-disciplines of the field, providing a useful framework from which to approach neuroscience education.

View Article and Find Full Text PDF

Reciprocal inhibition of motor neurons via Ia inhibitory interneurons recruited by stimulation of proprioceptive afferents supplying antagonist muscles has been well described. Changes in the efficacy of inhibition, and sometimes even a switch from inhibition to facilitation, have been reported in the literature after disruption of descending pathways. We sought to test whether such facilitation could be expressed in normal animals by evaluating the presence of facilitation in acute preparations from uninjured animals.

View Article and Find Full Text PDF

C-boutons are important cholinergic modulatory loci for state-dependent alterations in motoneuron firing rate. m2 receptors are concentrated postsynaptic to C-boutons, and m2 receptor activation increases motoneuron excitability by reducing the action potential afterhyperpolarization. Here, using an intensive review of the current literature as well as data from our laboratory, we illustrate that C-bouton postsynaptic sites comprise a unique structural/functional domain containing appropriate cellular machinery (a "signaling ensemble") for cholinergic regulation of outward K(+) currents.

View Article and Find Full Text PDF

Sensory feedback is critical for normal locomotion and adaptation to external perturbations during movement. Feedback provided by group Ia afferents influences motor output both directly through monosynaptic connections and indirectly through spinal interneuronal circuits. For example, the circuit responsible for reciprocal inhibition, which acts to prevent co-contraction of antagonist flexor and extensor muscles, is driven by Ia afferent feedback.

View Article and Find Full Text PDF

Elevated sympathetic outflow and altered autonomic reflexes, including impaired baroreflex function, are common findings observed in hypertensive disorders. Although a growing body of evidence supports a contribution of preautonomic neurons in the hypothalamic paraventricular nucleus (PVN) to altered autonomic control during hypertension, the precise underlying mechanisms remain unknown. Here, we aimed to determine whether the intrinsic excitability and repetitive firing properties of preautonomic PVN neurons that innervate the nucleus tractus solitarii (PVN-NTS neurons) were altered in spontaneously hypertensive rats (SHR).

View Article and Find Full Text PDF

Neurohumoral activation, a hallmark in heart failure (HF), is linked to the progression and mortality of HF patients. Thus, elucidating its precise underlying mechanisms is of critical importance. Other than its classic peripheral vasodilatory actions, the gas NO is a pivotal neurotransmitter in the central nervous system control of the circulation.

View Article and Find Full Text PDF

Commissural inhibitory interneurons (INs) are integral components of the locomotor circuitry that coordinate left-right motor activity during movements. We have shown that GABA-mediated synaptic transmission plays a key role in generating alternating locomotor-like activity in the mouse spinal cord (Hinckley et al., 2005a).

View Article and Find Full Text PDF

Despite the importance of brain-mediated sympathetic activation in the morbidity and mortality of patients with high blood pressure, the precise cellular mechanisms involved remain largely unknown. We show that an imbalanced interaction between two opposing currents mediated by potassium (I(A)) and calcium (I(T)) channels occurs in sympathetic-related hypothalamic neurons in hypertensive rats. We show that this imbalance contributes to enhanced membrane excitability and firing activity in this neuronal population.

View Article and Find Full Text PDF

The hypothalamic paraventricular nucleus (PVN) is composed of functionally heterogeneous cell groups, possessing distinct electrophysiological properties depending on their functional roles. Previously, T-type Ca(2+) dependent low-threshold spikes (LTS) have been demonstrated in various PVN neuronal types, including preautonomic cells. However, the molecular composition and functional properties of the underlying T-type Ca(2+) channels have not been characterized.

View Article and Find Full Text PDF

Accumulating evidence supports a contribution of the hypothalamic paraventricular nucleus (PVN) to sympathoexcitation and elevated blood pressure in renovascular hypertension. However, the underlying mechanisms resulting in altered neuronal function in hypertensive rats remain largely unknown. Here, we aimed to address whether the transient outward potassium current (I(A)) in identified rostral ventrolateral medulla (RVLM)-projecting PVN neurones is altered in hypertensive rats, and whether such changes affected single and repetitive action potential properties and associated changes in intracellular Ca(2+) levels.

View Article and Find Full Text PDF

Despite the fact that paraventricular nucleus (PVN) neurones innervating the rostral ventrolateral medulla (RVLM) play important roles in the control of sympathetic function both in physiological and pathological conditions, the precise mechanisms controlling their activity are still incompletely understood. In the present study, we evaluated whether the transient outward potassium current I(A) is expressed in PVN-RVLM neurones, characterized its biophysical and pharmacological properties, and determined its role in shaping action potentials and firing discharge in these neurones. Patch-clamp recordings obtained from retrogradely labelled, PVN-RVLM neurones indicate that a 4-AP sensitive, TEA insensitive current, with biophysical properties consistent with I(A), is present in these neurones.

View Article and Find Full Text PDF

The complete amino-acid sequence of subunit a of the hemocyanin of the tarantula Eurypelma californicum was determined by manual sequencing. By limited chymotrypsinolysis, subunit a is split into two fragments of 25 kDa and 40 kDa, respectively, only one single peptide bond being attacked. The whole chain contains 15 methionine residues, after cyanogen bromide cleavage, 15 peptides were identified indicating that one residue (Met85) was not split by the cyanogen bromide reaction.

View Article and Find Full Text PDF

The gene encoding lysostaphin of Staphylococcus staphylolyticus was cloned in Escherichia coli and its DNA sequence was determined. The complete coding region comprises 1440 base pairs corresponding to a precursor of 480 amino acids (molecular weight 51 669). It was shown by NH2-terminal amino acid sequence analysis of the purified extracellular lysostaphin from S.

View Article and Find Full Text PDF