Hückel molecular orbital (HMO) theory provides a semi-empirical treatment of the electronic structure in conjugated π-electronic systems. A scalable system-agnostic execution of HMO theory on a quantum computer is reported here based on a variational quantum deflation (VQD) algorithm for excited state quantum simulation. A compact encoding scheme is proposed here that provides an exponential advantage over the direct mapping and allows for quantum simulation of the HMO model for systems with up to 2n conjugated centers with n qubits.
View Article and Find Full Text PDFClassical optimizers play a crucial role in determining the accuracy and convergence of variational quantum algorithms; leading algorithms use a near-term quantum computer to solve the ground state properties of molecules, simulate dynamics of different quantum systems, and so on. In the literature, many optimizers, each having its own architecture, have been employed expediently for different applications. In this work, we consider a few popular and efficacious optimizers and assess their performance in variational quantum algorithms for applications in quantum chemistry in a realistic noisy setting.
View Article and Find Full Text PDFWe elaborate the two-component Douglas-Kroll reduction of the Dirac-Kohn-Sham problem of relativistic density-functional theory as introduced by Matveev and Rosch [J. Chem. Phys.
View Article and Find Full Text PDF