Introduction: Insulin-like growth factor-1 (IGF-1) promotes survival and inhibits cardiac autophagy disruption.
Methods: Male Wistar rats were treated with IGF-1 (50 µg/kg), and 24 h after injection hearts were excised. The level of interaction between Beclin-1 and the α subunit of sodium/potassium-adenosine triphosphates (Na/K-ATPase), and phosphorylated forms of IGF-1 receptor/insulin receptor (IGF-1R/IR), forkhead box protein O1 (FOXO1) and AMP-activated protein kinase (AMPK) were measured.
Background: We previously demonstrated that insulin-like growth factor-1 (IGF-1) regulates sodium/potassium adenosine triphosphatase (Na/K-ATPase) in vascular smooth muscle cells (VSMC) via phosphatidylinositol-3 kinase (PI3K). Taking into account that others' work show that IGF-1 activates the PI3K/protein kinase B (Akt) signaling pathway in many different cells, we here further questioned if the Akt/mammalian target of rapamycin (mTOR)/ribosomal protein p70 S6 kinase (S6K) pathway stimulates Na/K-ATPase, an essential protein for maintaining normal heart function.
Methods And Results: There were 14 adult male Wistar rats, half of whom received bolus injections of IGF-1 (50 μg/kg) for 24 h.
Subacute thyroiditis (SAT) is an organ-specific disease that various drugs, including COVID-19 vaccines, can trigger. COVID-19 infection has been associated with thyroid gland damage and disease SARS-CoV-2 direct action, euthyroid sick syndrome, and immune-mediated mechanisms are all potential mechanisms of thyroid damage. It denotes thyroid gland inflammation, most commonly of viral origin, and belongs to the transitory, self-limiting thyroid gland diseases group, causing complications in approximately 15% of patients in the form of permanent hypothyroidism.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
October 2023
Background: Thyroid nodules (TN) are localized morphological changes in the thyroid gland and can be benign or malignant.
Objective: The present study investigates the relationships between biochemical markers in serum (s) and their homologs in washout (w) after fine-needle aspiration biopsy (FNAB) of the TN of interest and their correlation with cytology specimen findings.
Methods: We investigated the relationships between serum biochemical markers nitric oxide (NO), thyroglobulin (TG), and calcitonin (CT), their homologs in washout after FNAB of the TN of interest, and cytology findings of biopsy samples classified according to the Bethesda system for thyroid cytopathology in this study, which included 86 subjects.
Front Endocrinol (Lausanne)
February 2023
Front Endocrinol (Lausanne)
January 2023
An imbalance between pro-oxidative and antioxidative cellular mechanisms is oxidative stress (OxS) which may be systemic or organ-specific. Although OxS is a consequence of normal body and organ physiology, severely impaired oxidative homeostasis results in DNA hydroxylation, protein denaturation, lipid peroxidation, and apoptosis, ultimately compromising cells' function and viability. The thyroid gland is an organ that exhibits both oxidative and antioxidative processes.
View Article and Find Full Text PDFTelomeres represent the ends of chromosomes, and they are composed of an extensive number of - TTAGGG nucleotide sequence repeats in humans. Telomeres prevent chromosome degradation, participate in stabilization, and regulate the DNA repair system. Inflammation and oxidative stress have been identified as important processes causing cardiovascular disease and accelerating telomere shortening rate.
View Article and Find Full Text PDFMetabolic diseases such as obesity, diabetes, dyslipidemia, and insulin resistance are characterized by glucose and lipid metabolism alterations and represent a global health problem. Many studies have established the crucial role of micro-ribonucleic acids (miRNAs) in controlling metabolic processes in various tissues. miRNAs are single- stranded, highly conserved non-coding RNAs containing 20-24 oligonucleotides that are expressed in a tissue-specific manner.
View Article and Find Full Text PDFThyroid hormones (TH) have a significant impact on cellular oxidative metabolism. Besides that, they maintain vascular homeostasis by positive effects on endothelial and vascular smooth muscle cells. Subclinical (SCH) and clinical (CH) hypothyroidism influences target organs by changing their morphology and function and impaired blood and oxygen supply induced by accelerated atherosclerosis.
View Article and Find Full Text PDFEven though type 2 diabetes mellitus (T2DM) represents a worldwide chronic health issue that affects about 462 million people, specific underlying determinants of insulin resistance (IR) and impaired insulin secretion are still unknown. There is growing evidence that chronic subclinical inflammation is a triggering factor in the origin of T2DM. Increased C-reactive protein (CRP) levels have been linked to excess body weight since adipocytes produce tumor necrosis factor (TNF-) and interleukin 6 (IL-6), which are pivotal factors for CRP stimulation.
View Article and Find Full Text PDFNormal cellular physiology and biochemical processes require undamaged RNA molecules. However, RNAs are frequently subjected to oxidative damage. Overproduction of reactive oxygen species (ROS) leads to RNA oxidation and disturbs redox (oxidation-reduction reaction) homeostasis.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a neurodegenerative disease that affects millions of individuals worldwide and can occur relatively early or later in life. It is well known that genetic components, such as the amyloid precursor protein gene on chromosome 21, are fundamental in early-onset AD (EOAD). To date, however, only the apolipoprotein E4 (ApoE4) gene has been proved to be a genetic risk factor for late-onset AD (LOAD).
View Article and Find Full Text PDFHypothyroidism is a common endocrine disorder that predominantly occurs in females. It is associated with an increased risk of cardiovascular diseases (CVD), but the molecular mechanism is not known. Disturbance in lipid metabolism, the regulation of oxidative stress, and inflammation characterize the progression of subclinical hypothyroidism.
View Article and Find Full Text PDFCardiovascular (CV) diseases are the most common health problems worldwide, with a permanent increase in incidence. Growing evidence underlines that insulin-like growth factor 1 (IGF-1) is a very important hormone responsible for normal CV system physiology. IGF-1 is an anabolic growth hormone, responsible for cell growth, differentiation, proliferation, and survival.
View Article and Find Full Text PDFTo remedy carotid artery stenosis and prevent stroke surgical intervention is commonly used, and the gold standard being carotid endarterectomy (CEA). During CEA cerebrovascular hemoglobin oxygen saturation decreases and when this decrease reaches critical levels it leads to cerebral hypoxia that causes neuronal damage. One of the proposed mechanism that affects changes during CEA and contribute to acute brain ischemia (ABI) is oxidative stress.
View Article and Find Full Text PDFRedox control is lost when the antioxidant defense system cannot remove abnormally high concentrations of signaling molecules, such as reactive oxygen species (ROS). Chronically elevated levels of ROS cause oxidative stress that may eventually lead to cancer and cardiovascular and neurodegenerative diseases. In this review, we focus on redox effects in the vascular system.
View Article and Find Full Text PDFOxid Med Cell Longev
December 2019
More people die from cardiovascular diseases (CVD) than from any other cause. Cardiovascular complications are thought to arise from enhanced levels of free radicals causing impaired "redox homeostasis," which represents the interplay between oxidative stress (OS) and reductive stress (RS). In this review, we compile several experimental research findings that show sustained shifts towards OS will alter the homeostatic redox mechanism to cause cardiovascular complications, as well as findings that show a prolonged antioxidant state or RS can similarly lead to such cardiovascular complications.
View Article and Find Full Text PDFBackground: Oestradiol is an important regulatory factor with several positive effects on the cardiovascular (CV) system. We evaluated the molecular mechanism of the in vivo effects of oestradiol on the regulation of cardiac inducible nitric oxide (NO) synthase (iNOS) expression and activity.
Methods: Male Wistar rats were treated with oestradiol (40 mg/kg, intraperitoneally) and after 24 h the animals were sacrificed.
The aim of this study was to investigate the in vivo effects of 17β-estradiol (E) on myocardial metabolism and inducible nitric oxide synthase (iNOS) expression/activity in obese rats. Male Wistar rats were fed with a normal or a high fat (HF) diet (42% fat) for 10 weeks. Half of the HF fed rats were treated with a single dose of E while the other half were placebo-treated.
View Article and Find Full Text PDFBackground: Nitric oxide (NO) is a potential biochemical, cardio-metabolic risk marker. The production of NO is catalyzed by different isoforms of enzymes, NO synthases (NOS). An altered NO level is associated with obesity, insulin resistance (IR), diabetes and cardiovascular diseases (CVD).
View Article and Find Full Text PDFCurr Vasc Pharmacol
December 2017
Apoptosis may contribute to a significant proportion of neuron death following acute brain ischemia (ABI), but the underlying mechanisms are still not fully understood. Brain ischemia may lead to stroke, which is one of the main causes of long-term morbidity and mortality in both developed and developing countries. Therefore, stroke prevention and treatment is clinically important.
View Article and Find Full Text PDFBackground: Overexpression of inducible nitric oxide synthase (iNOS) is a key link between high-fat (HF) diet induced obesity and cardiovascular disease. Oestradiol has cardioprotective effects that may be mediated through reduction of iNOS activity/expression.
Methods: In the present study, female Wistar rats were fed a standard diet or a HF diet (42% fat) for 10 weeks.
Men and women differ substantially with regard to the severity of insulin resistance (IR) but the underlying mechanism(s) of how this occurs is poorly characterized. We investigated whether a high fat (HF) diet resulted in sex-specific differences in nitrite/nitrate production and lipid metabolism and whether these variances may contribute to altered obesity-induced IR. Male and female Wistar rats were fed a standard laboratory diet or a HF diet for 10 weeks.
View Article and Find Full Text PDFThe amino acid, L-Arginine (L-Arg) plays an important role in the cardiovascular system. Data from the literature show that L-Arg is the only substrate for the production of nitric oxide (NO), from which L-Arg develops its effects on the cardiovascular system. As a free radical, NO is synthesized in all mammalian cells by L-Arg with the activity of NO synthase (NOS).
View Article and Find Full Text PDF