Publications by authors named "Sonja V Albers"

Protein N-glycosylation is a post-translational modification found in organisms of all domains of life. The crenarchaeal N-glycosylation begins with the synthesis of a lipid-linked chitobiose core structure, identical to that in Eukaryotes, although the enzyme catalyzing this reaction remains unknown. Here, we report the identification of a thermostable archaeal β-1,4--acetylglucosaminyltransferase, named rchaeal ycosylation enzyme 24 (Agl24), responsible for the synthesis of the N-glycan chitobiose core.

View Article and Find Full Text PDF

The microbial production of methane from organic matter is an essential process in the global carbon cycle and an important source of renewable energy. It involves the syntrophic interaction between methanogenic archaea and bacteria that convert primary fermentation products such as fatty acids to the methanogenic substrates acetate, H, CO, or formate. While the concept of syntrophic methane formation was developed half a century ago, the highly endergonic reduction of CO to methane by electrons derived from β-oxidation of saturated fatty acids has remained hypothetical.

View Article and Find Full Text PDF

The small winged helix-turn-helix (wHTH) proteins of the Lrs14 family are major transcriptional regulators and act as archaeal biofilm regulators (AbfRs) in the crenarchaeote Sulfolobus acidocaldarius. Here, the first crystal structure of an AbfR ortholog, AbfR2, the deletion of which is known to impair biofilm formation, is presented. Like most other wHTH orthologs, AbfR2 is dimeric in solution as well as in its 2.

View Article and Find Full Text PDF

Since their initial characterization over 30 years ago, it has been believed that the archaeal B-family DNA polymerases are single-subunit enzymes. This contrasts with the multi-subunit B-family replicative polymerases of eukaryotes. Here we reveal that the highly studied PolB1 from Sulfolobus solfataricus exists as a heterotrimeric complex in cell extracts.

View Article and Find Full Text PDF

Expression of the archaellum, the archaeal-type IV pilus-like rotating motility structure is upregulated under nutrient limitation. This is controlled by a network of regulators, called the archaellum regulatory network (arn). Several of the components of this network in Sulfolobus acidocaldarius can be phosphorylated, and the deletion of the phosphatase PP2A results in strongly increased motility during starvation, indicating a role for phosphorylation in the regulation of motility.

View Article and Find Full Text PDF

Transcription initiation of archaeal RNA polymerase (RNAP) and eukaryotic RNAPII is assisted by conserved basal transcription factors. The eukaryotic transcription factor TFIIE consists of α and β subunits. Here we have identified and characterised the function of the TFIIEβ homologue in archaea that on the primary sequence level is related to the RNAPIII subunit hRPC39.

View Article and Find Full Text PDF

Analyses of the DNA replication-associated proteins of hyperthermophilic archaea have yielded considerable insight into the structure and biochemical function of these evolutionarily conserved factors. However, little is known about the regulation and progression of DNA replication in the context of archaeal cells. In the current work, we describe the generation of strains of Sulfolobus solfataricus and Sulfolobus acidocaldarius that allow the incorporation of nucleoside analogues during DNA replication.

View Article and Find Full Text PDF

Eukarya and, more recently, some bacteria have been shown to rely on a cytoskeleton-based apparatus to drive chromosome segregation. In contrast, the factors and mechanisms underpinning this fundamental process are underexplored in archaea, the third domain of life. Here we establish that the archaeon Sulfolobus solfataricus harbors a hybrid segrosome consisting of two interacting proteins, SegA and SegB, that play a key role in genome segregation in this organism.

View Article and Find Full Text PDF

We studied the cellular localization of the archaeal exosome, an RNA-processing protein complex containing orthologs of the eukaryotic proteins Rrp41, Rrp42, Rrp4 and Csl4, and an archaea-specific subunit annotated as DnaG. Fractionation of cell-free extracts of Sulfolobus solfataricus in sucrose density gradients revealed that DnaG and the active-site comprising subunit Rrp41 are enriched together with surface layer proteins in a yellow colored ring, implicating that the exosome is membrane-bound. In accordance with this assumption, DnaG and Rrp41 were detected at the periphery of the cell by immunofluorescence microscopy.

View Article and Find Full Text PDF

Within the archaea, the thermoacidophilic crenarchaeote Sulfolobus solfataricus has become an important model organism for physiology and biochemistry, comparative and functional genomics, as well as, more recently also for systems biology approaches. Within the Sulfolobus Systems Biology ("SulfoSYS")-project the effect of changing growth temperatures on a metabolic network is investigated at the systems level by integrating genomic, transcriptomic, proteomic, metabolomic and enzymatic information for production of a silicon cell-model. The network under investigation is the central carbohydrate metabolism.

View Article and Find Full Text PDF

Sso0909 is a protein of the thermo-acidophilic crenarchaeon Sulfolobus solfataricus, annotated as a p60 katanin-like ATPase. We present here results supporting the hypothesis that Sso0909 is an orthologue of the eukaryotic ESCRT (endosomal sorting complex required for transport) ATPase Vps4 (vacular protein sorting 4). The spectrum of Sso0909 homologues is limited to several orders of Crenarchaea and to three euryarchaeal Thermoplasmata species, where they were presumably acquired by lateral gene transfer.

View Article and Find Full Text PDF

Most secreted archaeal proteins are targeted to the membrane via a tripartite signal composed of a charged N terminus and a hydrophobic domain, followed by a signal peptidase-processing site. Signal peptides of archaeal flagellins, similar to class III signal peptides of bacterial type IV pilins, are distinct in that their processing sites precede the hydrophobic domain, which is crucial for assembly of these extracytoplasmic structures. To identify the complement of archaeal proteins with class III signal sequences, a PERL program (FlaFind) was written.

View Article and Find Full Text PDF

The genome of the hyperthermophilic bacterium Thermotoga maritima contains the genes that encode core subunits of the protein translocase, a complex consisting of the molecular motor SecA and the protein conducting pore SecYE. In addition, we identified an erroneous sequence in the genome encoding for a putative secG gene. The genes of the T.

View Article and Find Full Text PDF

The ABC-ATPase GlcV energizes a binding protein-dependent ABC transporter that mediates glucose uptake in Sulfolobus solfataricus. Here, we report high-resolution crystal structures of GlcV in different states along its catalytic cycle: distinct monomeric nucleotide-free states and monomeric complexes with ADP-Mg(2+) as a product-bound state, and with AMPPNP-Mg(2+) as an ATP-like bound state. The structure of GlcV consists of a typical ABC-ATPase domain, comprising two subdomains, connected by a linker region to a C-terminal domain of unknown function.

View Article and Find Full Text PDF

In the archaeon Sulfolobus solfataricus glucose uptake is mediated by an ABC transport system. The ABC-ATPase of this transporter (GlcV) has been overproduced in Escherichia coli and purified. Crystals of GlcV suitable for data collection were obtained in the absence of nucleotide by microseeding combined with vapour diffusion from a mixture of PEG polymers and NaCl.

View Article and Find Full Text PDF