Publications by authors named "Sonja Spahr-Hess"

Neurosurgical interventions on the brain are impeded by the requirement to keep damages to healthy tissue at a minimum. A new contrast channel enhancing the visual separation of malign tissue should be created. A commercially available surgical microscope was modified with adaptation optics adapting the MHz speed optical coherence tomography (OCT) imaging system developed in our group.

View Article and Find Full Text PDF

Objective: It has been shown that optical coherence tomography (OCT) can identify brain tumor tissue and potentially be used for intraoperative margin diagnostics. However, there is limited evidence on its use in human in vivo settings, particularly in terms of its applicability and accuracy of residual brain tumor detection (RTD). For this reason, a microscope-integrated OCT system was examined to determine in vivo feasibility of RTD after resection with automated scan analysis.

View Article and Find Full Text PDF

Purpose: In brain tumor surgery, it is crucial to achieve complete tumor resection while conserving adjacent noncancerous brain tissue. Several groups have demonstrated that optical coherence tomography (OCT) has the potential of identifying tumorous brain tissue. However, there is little evidence on human application of this technology, especially regarding applicability and accuracy of residual tumor detection (RTD).

View Article and Find Full Text PDF

The discrimination of tumor-infiltrated tissue from non-tumorous brain tissue during neurosurgical tumor excision is a major challenge in neurosurgery. It is critical to achieve full tumor removal since it directly correlates with the survival rate of the patient. Optical coherence tomography (OCT) might be an additional imaging method in the field of neurosurgery that enables the classification of different levels of tumor infiltration and non-tumorous tissue.

View Article and Find Full Text PDF

Identifying tumour infiltration zones during tumour resection in order to excise as much tumour tissue as possible without damaging healthy brain tissue is still a major challenge in neurosurgery. The detection of tumour infiltrated regions so far requires histological analysis of biopsies taken from at expected tumour boundaries. The gold standard for histological analysis is the staining of thin cut specimen and the evaluation by a neuropathologist.

View Article and Find Full Text PDF