Previous studies have reported elevated von Willebrand factor (VWF) levels in patients with sickle cell disease (SCD) and demonstrated a key role for the VWF-ADAMTS13 axis in the pathobiology of SCD vaso-occlusion. Although blood transfusion is the gold standard for stroke prevention in SCD, the biological mechanisms underpinning its improved efficacy compared with hydroxycarbamide are not fully understood. We hypothesized that the improved efficacy of blood transfusion might relate to differences in VWF-ADAMTS13 axis dysfunction.
View Article and Find Full Text PDFIt has recently been shown that von Willebrand factor (VWF) multimers contribute to immunothrombosis in Coronavirus disease 2019 (COVID-19). Since COVID-19 is associated with an increased risk of autoreactivity, the present study investigates, whether the generation of autoantibodies to ADAMTS13 contributes to this finding. In this observational prospective controlled multicenter study blood samples and clinical data of patients hospitalized for COVID-19 were collected from April to November 2020.
View Article and Find Full Text PDFBackground: The identification of the underlying mechanism in ischemic stroke has important implications for secondary prevention. A disintegrin and metalloprotease with a thrombospondin type 1 motif, member 13 (ADAMTS-13) has antithrombotic properties and was repeatedly implicated in the pathophysiology of stroke. In this study, we, therefore, aimed to investigate whether ADAMTS-13 is associated with stroke etiology and the burden of vascular risk factors.
View Article and Find Full Text PDFMost hereditary forms of hemophagocytic lymphohistiocytosis (HLH) are caused by defects of cytotoxicity, including the vesicle trafficking disorder Griscelli syndrome type 2 (GS2, RAB27A deficiency). Deficiency of the mitogen-activated protein kinase activating death domain protein (MADD) results in a protean syndrome with neurological and endocrinological involvement. MADD acts as a guanine nucleotide exchange factor for small guanosine triphosphatases, including RAB27A.
View Article and Find Full Text PDFUbiquitous microthromboses in the pulmonary vasculature play a crucial role in the pathogenesis of COVID-19 associated acute respiratory distress syndrome (ARDS). Excess of Willebrand factor (vWf) with intravascular multimer formation was identified as a key driver of this finding. Plasma exchange (PLEX) might be a therapeutic option to restore the disbalance between vWf and ADAMTS13.
View Article and Find Full Text PDFBackground: Consistent with fulminant endothelial cell activation, elevated plasma von Willebrand factor (VWF) antigen levels have been reported in patients with COVID-19. The multimeric size and function of VWF are normally regulated through A Disintegrin And Metalloprotease with ThrombSpondin Motif type 1 motif, member 13 (ADAMTS-13)--mediated proteolysis.
Objectives: This study investigated the hypothesis that ADAMTS-13 regulation of VWF multimer distribution may be impaired in severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection contributing to the observed microvascular thrombosis.
Objectives: Prevention and therapy of immunothrombosis remain crucial challenges in the management of coronavirus disease 2019, since the underlying mechanisms are incompletely understood. We hypothesized that endothelial damage may lead to substantially increased concentrations of von Willebrand factor with subsequent relative deficiency of a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13).
Design: Prospective controlled cross-over trial.
ADAMTS13 regulates the hemostatic activity of von Willebrand factor (VWF). Determined by static assays, proteolytic activity <10IU/dL in patient plasma, in absence of ADAMTS13 autoantibodies, indicates Upshaw-Schulman syndrome (USS); the congenital form of Thrombotic Thrombocytopenic Purpura (TTP). We have recently functionally characterized sixteen USS-associated ADAMTS13 missense variants under static conditions.
View Article and Find Full Text PDFThe platelet receptor glycoprotein (GP) IIb/IIIa, formed by integrins α and β, plays an important role in platelet adhesion and aggregation. Its major binding site is the arginine-glycine-aspartic acid (RGD) sequence present in several adhesive proteins. Upon platelet activation, inside-out signaling activates the complex permitting binding to RGD motif containing proteins, such as von Willebrand factor (VWF).
View Article and Find Full Text PDFThe formation of hemostatic plugs at sites of vascular injury crucially involves the multimeric glycoprotein von Willebrand factor (VWF). VWF multimers are linear chains of N-terminally linked dimers. The latter are formed from monomers via formation of the C-terminal disulfide bonds Cys2771-Cys2773', Cys2773-Cys2771', and Cys2811-Cys2811'.
View Article and Find Full Text PDFWe previously reported that von Willebrand Factor gene (VWF) conversions are a relatively frequent cause of von Willebrand disease (VWD), however, their molecular pathomechanisms resulting in variant phenotypes is largely unknown. Here, we characterized VWF conversions harbouring missense and synonymous mutations, through generating a series of mutant constructs followed by transient expression in 293 cells, and qualitative and quantitative analysis of recombinant VWF (rVWF). The characterization of mutant rVWF showed the critical roles of synonymous variants in the pathogenicity of VWF conversions.
View Article and Find Full Text PDFIntroduction: ADAMTS13 deficiency results in unusually large von Willebrand factor (ULVWF) multimers in the circulation and a higher risk of microthrombi due to high shear stress. In patients treated for acquired thrombotic thrombocytopenic purpura (TTP), a persistently severe ADAMTS13 deficiency (<10%) in remission is associated with more relapses. A reduced plasma ADAMTS13 activity and increased VWF levels are associated with a higher risk of myocardial infarction.
View Article and Find Full Text PDFUpshaw-Schulman syndrome (USS) is caused by severe ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) deficiency due to homozygous or compound heterozygous mutations in the ADAMTS13 gene. Previous studies suggest three possible disease mechanisms: (1) reduced secretion of ADAMTS13 variants, (2) impaired proteolytic activity, (3) defective biosynthesis due to nonsense-mediated decay. Expression studies have failed to establish a clear genotype/phenotype correlation that could explain the significant variability in the age of onset and patients' clinical courses.
View Article and Find Full Text PDFCritical clinical questions remain unanswered regarding diagnosis and management of patients with low von Willebrand factor (VWF) levels (30-50 IU/dL). To address these questions, the Low VWF Ireland Cohort (LoVIC) study investigated 126 patients registered with low VWF levels. Despite marginally reduced plasma VWF levels, International Society of Thrombosis and Haemostasis Bleeding Assessment Tool (ISTH BAT) confirmed significant bleeding phenotypes in the majority of LoVIC patients.
View Article and Find Full Text PDFObjective: Previous studies have demonstrated a role for plasmin in regulating plasma von Willebrand factor (VWF) multimer composition. Moreover, emerging data have shown that plasmin-induced cleavage of VWF is of particular importance in specific pathological states. Interestingly, plasmin has been successfully used as an alternative to ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 motif) in a mouse model of thrombotic thrombocytopenic purpura.
View Article and Find Full Text PDFAtypical hemolytic uremic syndrome and thrombotic thrombocytopenic purpura have traditionally been considered separate entities. Defects in the regulation of the complement alternative pathway occur in atypical hemolytic uremic syndrome, and defects in the cleavage of von Willebrand factor (VWF)-multimers arise in thrombotic thrombocytopenic purpura. However, recent studies suggest that both entities are related as defects in the disease-causing pathways overlap or show functional interactions.
View Article and Find Full Text PDFAcquired von Willebrand syndrome (AVWS) is a rare bleeding disorder that may cause life-threatening hemorrhages in patients with plasma cell dyscrasias (PCDs). Early diagnosis and treatment require a thorough understanding of its underlying pathophysiology. Two patients with IgG MGUS presented with dramatically decreased plasma von Willebrand factor (VWF) and a severe type-1 pattern on multimer analysis.
View Article and Find Full Text PDFMultimeric von Willebrand factor (VWF) is essential for primary hemostasis. The biosynthesis of VWF high-molecular-weight multimers requires spatial separation of each step because of varying pH value requirements. VWF is dimerized in the endoplasmic reticulum by formation of disulfide bonds between the C-terminal cysteine knot (CK) domains of 2 monomers.
View Article and Find Full Text PDFAims: Acquired von Willebrand syndrome (aVWS) is a common complication of severe aortic valve stenosis and can be corrected by surgical valve replacement. Transcatheter aortic valve implantation (TAVI) is gaining importance, but the influence of this new technique on aVWS has never been examined. The objective of this study was to assess the impact of TAVI on aVWS.
View Article and Find Full Text PDFAcquired hemophilia A (AHA) and acquired von Willebrand Syndrome (AVWS) are both rare bleeding disorders that can be associated with lymphoproliferative or autoimmune diseases. AHA is uniformly caused by inhibitory autoantibodies against coagulation factor VIII (FVIII), while the pathophysiology of AVWS comprises several distinct mechanisms, including reduced synthesis, accelerated clearance, or increased proteolysis. In this regard, autoantibodies to von Willebrand factor (VWF) have been described in patients with systemic lupus erythematosus (SLE) or monoclonal gammopathy.
View Article and Find Full Text PDFCongenital thrombotic thrombocytopenic purpura (TTP) or Upshaw-Schulman syndrome is caused by homozygous or compound heterozygous mutations in the ADAMTS-13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) gene. We investigated 30 patients with congenital TTP and analyzed clinical data and underlying ADAMTS-13 mutations. All patients showed virtually no ADAMTS-13 activity in plasma.
View Article and Find Full Text PDFAmong the different phenotypes of von Willebrand disease (VWD) type 2A, we identified a particular subgroup with a high frequency of 29%, characterized by a relative decrease of large von Willebrand factor (VWF) multimers and decreased A Disintegrin And Metalloproteinase with ThromboSpondin type 1 motifs, member 13 (ADAMTS13)-mediated proteolysis previously described in a single family as VWD type IIE (VWD2A/IIE). Phenotype and genotype of 57 patients from 38 unrelated families displaying a particular multimer pattern resembling the original VWD2A/IIE were studied. Pathogenicity of candidate mutations was confirmed by expression studies and phenotypic characterization of recombinant mutants.
View Article and Find Full Text PDFWe characterized a consanguineous Turkish family suffering from von Willebrand disease (VWD) with significant mucocutaneous and joint bleeding. The relative reduction of large plasma von Willebrand factor (VWF) multimers and the absent VWF triplet structure was consistent with type 2A (phenotype IIC) VWD. Surprisingly, platelet VWF was completely deficient of multimers beyond the VWF protomer, suggesting defective alpha-granular storage of larger multimers.
View Article and Find Full Text PDFClassical von Willebrand disease (VWD) type 2A, the most common qualitative defect of VWD, is caused by loss of high-molecular-weight multimers (HMWMs) of von Willebrand factor (VWF). Underlying mutations cluster in the A2 domain of VWF around its cleavage site for ADAMTS13. We investigated the impact of mutations commonly found in patients with VWD type 2A on ADAMTS13-dependent proteolysis of VWF.
View Article and Find Full Text PDF