Above its glass transition, the equilibrated high-density amorphous ice (HDA) transforms to the low-density pendant (LDA). The temperature dependence of the transformation is monitored at ambient pressure using dielectric spectroscopy and at elevated pressures using dilatometry. It is found that near the glass transition temperature of deuterated samples, the transformation kinetics is 300 times slower than the structural relaxation, while for protonated samples, the time scale separation is at least 30 000 and insensitive to doping.
View Article and Find Full Text PDFTriazatriangulenium (TATA) platform molecules allow the preparation of functionalized surfaces with well-defined lateral spacings of freestanding functional groups. Using scanning tunneling microscopy, synchrotron-based X-ray photoelectron spectroscopy, near edge X-ray absorption fine structure spectroscopy and complementary density functional theory calculations the chemical composition and orientational order of adlayers of functionalized azobenzene containing TATA platform molecules were characterized. According to these studies the molecules are chemically intact on the surface after self-assembly from solution and exhibit a well-defined adsorption geometry where the azobenzene units are oriented almost perpendicular to the surface.
View Article and Find Full Text PDFIn situ scanning tunneling microscopy and cyclic voltammetry studies of self-assembled octyl-triazatriangulenium monolayers on Au(111) electrode surfaces in 0.1 M HClO4 reveal a complex surface phase behavior, involving two fast, highly reversible transitions between different ordered adlayer phases: With decreasing potential, the preadsorbed (√19 × √19)R23.4° adlayer first is converted into a (7√3 × 7√3) and then into a (2√3 × 2√3)R30° phase, corresponding to a stepwise increase in the local packing density of the molecules.
View Article and Find Full Text PDFSpectroscopic evidence of a reversible, photoinduced trans ↔ cis photoisomerization is provided for an azobenzene-functionalized triazatriangulene (TATA) platform on Au(111). As shown by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS), these molecules form a well-ordered self-assembled monolayer (SAM) on Au(111). The surface-adsorbed azo-TATA platforms are also investigated by infrared reflection absorption spectroscopy (IRRAS); a methoxy marker group at the upper phenyl ring of the azo moiety is employed to monitor the switching state.
View Article and Find Full Text PDFThe controlled attachment of chromophores to metal or semiconducting surfaces is a prerequisite for the construction of photonic devices and artificial surface-based light-harvesting systems. We present an approach to mount porphyrins in ordered monolayers on Au(111) by self-assembly and verify it, employing STM, absorption spectroscopy, and quantum chemical calculations. The usual adsorption geometry of planar chromophores, flat on the surface or densely packed edge-on, is prevented by mounting the porphyrins upright on a molecular platform.
View Article and Find Full Text PDF