Hyaluronic acid (HA), an FDA-approved natural polymer and important component of the extracellular matrix (ECM), has been widely used to develop hydrogels for cartilage regeneration. However, HA hydrogels often exhibit poor mechanical properties and unsuitable degradability, limiting their capability to support cell growth in cartilage. To overcome these challenges, this study modifies HA with a silica precursor and the coupling agent (3-Glycidyloxypropyl) trimethoxysilane (GPTMS) to develop a monophasic organic-inorganic hybrid HA-silica hydrogel.
View Article and Find Full Text PDFThis study explores the 3D printing of alginate dialdehyde-gelatin (ADA-GEL) inks incorporating phytotherapeutic agents, such as ferulic acid (FA), and silicate mesoporous bioactive glass nanoparticles (MBGNs) at two different concentrations. 3D scaffolds with bioactive properties suitable for bone tissue engineering (TE) were obtained. The degradation and swelling behaviour of films and 3D printed scaffolds indicated an accelerated trend with increasing MBGN content, while FA appeared to stabilize the samples.
View Article and Find Full Text PDFThe present work explores the 3D extrusion printing of ferulic acid (FA)-containing alginate dialdehyde (ADA)-gelatin (GEL) scaffolds with a wide spectrum of biophysical and pharmacological properties. The tailored addition of FA (≤0.2 %) increases the crosslinking between FA and GEL in the presence of calcium chloride (CaCl) and microbial transglutaminase, as confirmed using trinitrobenzenesulfonic acid (TNBS) assay.
View Article and Find Full Text PDFHydrogels are ideal materials for mimicking and engineering soft tissue. Hyaluronic acid is a linear polysaccharide native to the human extracellular matrix. In this study, we first develop and characterize two hydrogel compositions built from oxidized HA and gelatin with and without alginate-di-aldehyde (ADA) crosslinked by ionic and enzymatic agents with potential applications in soft tissue engineering and tissue mimicking structures.
View Article and Find Full Text PDFBioengineering (Basel)
February 2022
Mesenchymal stem cells (MSCs) are primary candidates in tissue engineering and stem cell therapies due to their intriguing regenerative and immunomodulatory potential. Their ability to self-assemble into three-dimensional (3D) aggregates further improves some of their therapeutic properties, e.g.
View Article and Find Full Text PDFAs cartilage is one of the few tissues in the human body that is not vascularized, the body has very limited capabilities to repair cartilage defects. Hence, novel condro-instructive biomaterials facilitating cartilage formation by implanted chondrocytes are required. In this work, an oxidized alginate-gelatin hydrogel system, alginate-di-aldehyde (ADA) and gelatin (GEL), was used to fabricate 3D printed grid-like structures for cartilage tissue engineering.
View Article and Find Full Text PDF