Publications by authors named "Sonja Johannsmeier"

The development of non-destructive, tomographic imaging systems is a current topic of research in biomedical technologies. One of these technologies is Scanning Laser Optical Tomography (SLOT), which features a highly modular setup with various contrast mechanisms. Extending this technology with new acquisition mechanisms allows us to investigate untreated and non-stained biological samples, leaving their natural biological physiology intact.

View Article and Find Full Text PDF

The feasibility of low frequency pure tone generation in the inner ear by laser-induced nonlinear optoacoustic effect at the round window was demonstrated in three human cadaveric temporal bones (TB) using an integral pulse density modulation (IPDM). Nanosecond laser pulses with a wavelength in the near-infrared (NIR) region were delivered to the round window niche by an optical fiber with two spherical lenses glued to the end and a viscous gel at the site of the laser focus. Using IPDM, acoustic tones with frequencies between 20 Hz and 1 kHz were generated in the inner ear.

View Article and Find Full Text PDF

Triple-negative breast cancer is an aggressive subtype of breast cancer that has a poor five-year survival rate. The tumor's extracellular matrix is a major compartment of its microenvironment and influences the proliferation, migration and the formation of metastases. The study of such dependencies requires methods to analyze the tumor matrix in its native form.

View Article and Find Full Text PDF

The aim of this work is to generate defined tones that cover the human hearing range in aqueous media for a later application in middle or inner ear implants. In our experiments, we investigated the characteristics of single laser pulses and pulse trains with different laser repetition rates of nanosecond laser pulses that were focused into aqueous media in a small volume. The frequency of the generated tones was limited by the spectral properties of the single acoustic pulses, which depended on the medium.

View Article and Find Full Text PDF

Avoiding damage of the endothelial cells, especially in thin corneas, remains a challenge in corneal collagen crosslinking (CXL). Knowledge of the riboflavin gradients and the UV absorption characteristics after topical application of riboflavin in concentrations ranging from 0.1% to 0.

View Article and Find Full Text PDF

Background: In this study, the tear resistance of porcine lens capsules after continuous curvilinear capsulorhexis (CCC) and femtosecond (fs)-laser-assisted capsulotomy for cataract surgery (FLC) with different laser parameters is measured with a custom-made testing setup.

Methods: Forty-five fresh porcine lenses were randomly chosen for CCC (n = 15) or FLC 1 (n = 15) and FLC 2 (n = 15). The FLC 1-group was treated with smaller spot distances than the FLC 2-group.

View Article and Find Full Text PDF

Light as a tool in medical therapy and biological research has been studied extensively and its application is subject to continuous improvement. However, safe and efficient application of light-based methods in photomedicine or optogenetics requires knowledge about the optical properties of the target tissue as well as the response characteristics of the stimulated cells. Here, we used tissue phantoms and a heart-like light-sensitive cell line to investigate optogenetic stimulation through tissue layers.

View Article and Find Full Text PDF

Hydrogels are favored materials in tissue engineering as they can be used to imitate tissues, provide scaffolds, and guide cell behavior. Recent advances in the field of optogenetics have created a need for biocompatible optical waveguides, and hydrogels have been investigated to meet these requirements. However, combining favorable waveguiding characteristics, high biocompatibility, and controllable bioactivity in a single device remains challenging.

View Article and Find Full Text PDF

Stimulation of neuronal cells generally resorts to electric signals. Recent advances in laser-based stimulation methods could present an alternative with superior spatiotemporal resolution. The avoidance of electronic crosstalk makes these methods attractive for in vivo therapeutic application.

View Article and Find Full Text PDF