The endomembrane system of cereal seed endosperm is a highly plastic and dynamic system reflecting the high degree of specialization of this tissue. It is capable of coping with high levels of storage protein synthesis and undergoes rapid changes to accommodate these storage proteins in newly formed storage organelles such as endoplasmic reticulum-derived protein bodies or protein storage vacuoles. The study of endomembrane morphology in cereal endosperm is challenging due to the amount of starch that cereal seeds accumulate and the progressive desiccation of the tissue.
View Article and Find Full Text PDFLight responses of rabbit horizontal cell somata (HC) to flickering light stimuli recorded with sharp electrodes consist of a distinctive flicker component superimposed on a sustained hyperpolarisation. Activation of dopamine D1/D5 receptors depolarises HC dark membrane potential and suppresses the flicker component of responses to photopic stimuli without affecting the sustained hyperpolarising response component. Waveforms of responses to scotopic stimuli are preserved.
View Article and Find Full Text PDFReceptive fields of gap junction-coupled axon terminals of B-type horizontal cells of isolated rabbit retinae were measured by recording light responses to slit shaped light stimuli at different eccentricities from the recording site. The D1/D5 agonist SKF-38393 and the membrane permeant second messenger 8-bromo-cAMP caused decreases of space constants by 20% while the D1/D5 antagonist SCH-23390 increased space constants by 25%. The results of this study indicate that axon terminal receptive fields of the rabbit retina can be modulated by D1/D5 receptor activation based on a cAMP-mediated mechanism.
View Article and Find Full Text PDF