An amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFA comprehensive database of paleoclimate records is needed to place recent warming into the longer-term context of natural climate variability. We present a global compilation of quality-controlled, published, temperature-sensitive proxy records extending back 12,000 years through the Holocene. Data were compiled from 679 sites where time series cover at least 4000 years, are resolved at sub-millennial scale (median spacing of 400 years or finer) and have at least one age control point every 3000 years, with cut-off values slackened in data-sparse regions.
View Article and Find Full Text PDFThe ecological response of shallow oxbow lakes to variability in hydrology and catchment development in large river floodplain ecosystems (RFE) in Arkansas remains largely unknown. Investigating these responses will advance our understanding of ecological evolution of oxbow lakes in response to the major environmental drivers, which will establish baseline conditions required to develop effective management practices for RFE. In this pilot study, we examined the potential of using a dated surface sediment core from Adams Bayou, a floodplain lake located within the Cache-Lower White River Ramsar site in SE Arkansas.
View Article and Find Full Text PDFOver-enrichment leading to excess algal growth is a major problem in rivers and streams. Regulations to protect streams typically incorporate nutrient criteria, concentrations of phosphorus and nitrogen that should not be exceeded in order to protect biological communities. A major challenge has been to develop an approach for both categorizing streams based on their biological conditions and determining scientifically defensible nutrient criteria to protect the biotic integrity of streams in those categories.
View Article and Find Full Text PDFFourier transform infrared spectroscopy (FTIRS) can provide detailed information on organic and minerogenic constituents of sediment records. Based on a large number of sediment samples of varying age (0-340,000 yrs) and from very diverse lake settings in Antarctica, Argentina, Canada, Macedonia/Albania, Siberia, and Sweden, we have developed universally applicable calibration models for the quantitative determination of biogenic silica (BSi; n = 816), total inorganic carbon (TIC; n = 879), and total organic carbon (TOC; n = 3164) using FTIRS. These models are based on the differential absorbance of infrared radiation at specific wavelengths with varying concentrations of individual parameters, due to molecular vibrations associated with each parameter.
View Article and Find Full Text PDF