Publications by authors named "Sonja Gehrisch"

Purpose: To evaluate feasibility of using three-dimensional (3D) quantitative color-coding analysis (QCA) to quantify substasis endpoints after transcatheter arterial chemoembolization of hepatocellular carcinoma (HCC).

Materials And Methods: This single-institution prospective study included 20 patients with HCC who had undergone segmental or subsegmental transcatheter arterial chemoembolization between December 2015 and March 2017. The chemoembolization endpoint was a sluggish anterograde tumor-feeding arterial flow without residual tumor stains.

View Article and Find Full Text PDF

Purpose: Objective intraprocedural measurement of hepatic blood flow could provide a quantitative treatment end point for locoregional liver procedures. This study aims to validate the accuracy and reproducibility of cone-beam computed tomography perfusion (CBCTp) measurements of arterial liver perfusion (ALP) against clinically available computed tomography perfusion (CTp) measurements in a swine embolization model.

Methods: Triplicate CBCTp measurements using a selective arterial contrast injection were performed before and after complete embolization of the left lobe of the liver in 5 swine.

View Article and Find Full Text PDF

Purpose: To identify computational and qualitative features derived from dual-phase cone-beam CT that predict short-term response in patients undergoing transarterial chemoembolization for hepatocellular carcinoma (HCC).

Materials And Methods: This retrospective study included 43 patients with 59 HCCs. Six features were extracted, including intensity of tumor enhancement on both phases and characteristics of the corona on the washout phase.

View Article and Find Full Text PDF

Purpose: The purpose of this pilot study was to demonstrate the applicability of time-resolved three-dimensional (3D) reconstructions from 3D digital subtraction angiography (DSA) rotational angiography (RA) datasets (four-dimensional (4D) DSA) to provide a more detailed display of the architecture of intracranial vascular malformations.

Methods: The experimental reconstruction software was applied to the existing 3D DSA datasets obtained with Siemens Artis zee biplane neuroangiography equipment. We included 27 patients with clinical indications for 3DRA for preinterventional or preoperative evaluation of intracranial dural arteriovenous fistulas (dAVFs, n=8) or arteriovenous malformations (AVMs, n=19).

View Article and Find Full Text PDF

Purpose: To quantify the arterial flow change during transcatheter arterial chemoembolization (TACE) for hepatocellular carcinoma (HCC) using digital subtraction angiography, quantitative color-coding analysis (d-QCA), and real-time subtraction fluoroscopy QCA (f-QCA).

Materials And Methods: This prospective study enrolled 20 consecutive patients with HCC who had undergone TACE via a subsegmental approach between February 2014 and April 2015. The TACE endpoint was a sluggish antegrade tumor-feeding arterial flow.

View Article and Find Full Text PDF

Purpose: Hemodynamic simulations are of increasing interest for the assessment of aneurysmal rupture risk and treatment planning. Achievement of accurate simulation results requires the usage of several patient-individual boundary conditions, such as a geometric model of the vasculature but also individualized inflow conditions.

Methods: We propose the automatic estimation of various parameters for boundary conditions for computational fluid dynamics (CFD) based on a single 3D rotational angiography scan, also showing contrast agent inflow.

View Article and Find Full Text PDF

Purpose: Fluoroscopic systems in modern interventional suites have the ability to perform flat panel detector CT (FDCT) with navigational guidance. Fusion with MR allows navigational guidance towards FDCT occult targets. We aim to evaluate the accuracy of this system using single-pass needle placement in a deep brain stimulation (DBS) phantom.

View Article and Find Full Text PDF