Background: Rhinovirus (RV), a major cause of respiratory infection in humans, imposes an enormous economic burden due to the direct and indirect costs associated with the illness. Accurate and timely diagnosis is crucial for deciding the appropriate clinical approach and minimizing unnecessary prescription of antibiotics. Diagnosis of RV is extremely challenging due to genetic and serological variability among its numerous types and their similarity to enteroviruses.
View Article and Find Full Text PDFIntroduction: Streptococcus pyogenes (group A Streptococcus, GAS) is responsible for a variety of highly communicable infections, accounting for 5-15 and 20-30% of sore throat hospital visits in adults and children, respectively. Prompt diagnosis of GAS can improve the quality of patient care and minimize the unnecessary use of antibiotics.
Objective: Our objective was to develop an alternative nucleic acid amplification method for the diagnosis of GAS.
Isothermal nucleic acid amplification methods can potentially shorten the amount of time required to diagnose influenza. We developed and evaluated a novel isothermal nucleic acid amplification method, RT-SIBA to rapidly detect and differentiate between influenza A and B viruses in a single reaction tube. The performance of the RT-SIBA Influenza assay was compared with two established RT-PCR methods.
View Article and Find Full Text PDFRapid molecular diagnostic testing for respiratory infections can improve patient care and minimize unnecessary prescriptions of antibiotics. We present the preliminary clinical evaluation of Orion GenRead RSV, a novel, rapid, and easy-to-use molecular test for the diagnosis of respiratory syncytial virus (RSV) infection. The sensitivity and specificity of Orion GenRead RSV were 99% and 100%, respectively.
View Article and Find Full Text PDFBackground: Respiratory syncytial virus (RSV) is one of the most common causes of respiratory tract infections among young children and the elderly. Timely and accurate diagnosis of respiratory tract infections improves patient care and minimizes unnecessary prescriptions of antibiotics. We sought to develop a rapid nucleic acid tests for the detection of RSV within minutes, while retaining the high sensitivity achieved with RT-PCR.
View Article and Find Full Text PDFRapid and accurate diagnosis of influenza viruses plays an important role in infection control, as well as in preventing the misuse of antibiotics. Isothermal nucleic acid amplification methods offer significant advantages over the polymerase chain reaction (PCR), since they are more rapid and do not require the sophisticated instruments needed for thermal cycling. We previously described a novel isothermal nucleic acid amplification method, 'Strand Invasion Based Amplification' (SIBA®), with high analytical sensitivity and specificity, for the detection of DNA.
View Article and Find Full Text PDF