Understanding and controlling decoherence in open quantum systems is of fundamental interest in science, whereas achieving long coherence times is critical for quantum information processing. Although great progress was made for individual systems, and electron spin resonance (ESR) of single spins with nanoscale resolution has been demonstrated, the understanding of decoherence in many complex solid-state quantum systems requires ultimately controlling the environment down to atomic scales, as potentially enabled by scanning probe microscopy with its atomic and molecular characterization and manipulation capabilities. Consequently, the recent implementation of ESR in scanning tunnelling microscopy represents a milestone towards this goal and was quickly followed by the demonstration of coherent oscillations and access to nuclear spins with real-space atomic resolution.
View Article and Find Full Text PDF