A20 haploinsufficiency (HA20) is an autoinflammatory disease caused by heterozygous loss-of-function variations in , the gene encoding the A20 protein. Diagnosis of HA20 is challenging due to its heterogeneous clinical presentation and the lack of pathognomonic symptoms. While the pathogenic effect of truncating variations is clearly established, that of missense variations is difficult to determine.
View Article and Find Full Text PDFCirculating serum amyloid A (SAA) is increased in various inflammatory conditions. The human SAA protein family comprises the acute phase SAA1/SAA2, known to activate a large set of innate and adaptive immune cells, and the constitutive SAA4. The liver synthesis of SAA1/SAA2 is well-established but there is still an open debate on extrahepatic SAA expression especially in macrophages.
View Article and Find Full Text PDFPhotoaging and epithelial skin tumorigenesis are complex processes triggered mainly by UV radiation from chronic sun exposure. This leads to DNA damage and reactive oxygen species (ROS) production, which initiate an inflammatory response that alters cell structure and function. Changes in cell homeostasis and ROS production activate intracellular multiprotein platforms called inflammasomes.
View Article and Find Full Text PDFInflammasomes are intracellular multiprotein signaling complexes, mainly present in myeloid cells. They commonly assemble around a cytoplasmic receptor of the nucleotide-binding leucine-rich repeat containing receptor (NLR) family, although other cytoplasmic receptors like pyrin have been shown to form inflammasomes. The nucleation of the multiprotein scaffolding platform occurs upon detection of a microbial, a danger or a homeostasis pattern by the receptor that will, most commonly, associate with the adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD) through homotypic domain interactions resulting in recruitment of procaspase-1.
View Article and Find Full Text PDFInflammasomes are multiprotein complexes nucleating around an NLR (Nucleotide-binding domain and Leucine-rich Repeat containing protein), which regulate the secretion of the pro-inflammatory interleukin (IL)-1β and IL-18 cytokines. Monocytes and macrophages, the main cells expressing the inflammasome genes, adapt to their surrounding microenvironment by a phenotypic polarization towards a pro-inflammatory M1 phenotype that promotes inflammation or an anti-inflammatory M2 phenotype important for resolution of inflammation. Despite the importance of inflammasomes in health and disease, little is known about inflammasome gene expression in relevant human cells and the impact of monocyte and macrophage polarization in inflammasome gene expression.
View Article and Find Full Text PDFWe report on a familial Mediterranean fever (FMF) patient homozygous for p.M694V in the MEFV gene who developed chronic myelomonocytic leukemia (CMML) leading to an uncontrolled and fatal inflammatory syndrome. Plasma levels of IL-6 and IL-18 were found to be very high, as compared to healthy controls and CMML-free FMF patients.
View Article and Find Full Text PDFBackground: Observational studies report that secretory phospholipase A2 (sPLA2) activity is a marker for coronary heart disease (CHD) risk, and activity measures are thought to represent the composite activity of sPLA2-IIA, -V, and -X. The aim of this study was to use genetic variants of PLA2G10, encoding sPLA2-X, to investigate the contribution of sPLA2-X to the measure of sPLA2 activity and coronary heart disease (CHD) risk traits and outcome.
Methods And Results: Three PLA2G10 tagging single-nucleotide polymorphisms (rs72546339, rs72546340, and rs4003232) and a previously studied PLA2G10 coding single-nucleotide polymorphism rs4003228, R38C, were genotyped in a nested case: control cohort drawn from the prospective EPIC-Norfolk Study (2175 cases and 2175 controls).
Objective: Atherosclerosis is an inflammatory disease, where activated immunocompetent cells, including dendritic cells (DCs) and T cells are abundant in plaques. Low-density lipoprotein modified either by oxidation (oxLDL) or by human group X-secreted phospholipase A2 (LDLx) and heat shock proteins (HSP), especially HSP60 and 90, have been implicated in atherosclerosis. We previously reported that Annexin A5 inhibits inflammatory effects of phospholipids, decreases vascular inflammation and improves vascular function in apolipoprotein E(-/-) mice.
View Article and Find Full Text PDFObjective: Increased secreted phospholipase A(2) (sPLA(2)) activity has been documented in several inflammatory disorders. Among sPLA(2)s, the human group X (hGX)-sPLA(2) has the highest catalytic activity towards phosphatidylcholine (PC), the major phospholipid of cell membranes and blood lipoproteins. hGX-sPLA(2) has been detected in human atherosclerotic lesions, indicating that sPLA(2)s are an important link between lipids and inflammation, both involved in atherosclerosis.
View Article and Find Full Text PDFSecreted phospholipases A2 (sPLA2s) are present in atherosclerotic plaques and are now considered novel attractive therapeutic targets and potential biomarkers as they contribute to the development of atherosclerosis through lipoprotein-dependent and independent mechanisms. We have previously shown that hGX-sPLA2-phospholipolyzed LDL (LDL-X) induces proinflammatory responses in human umbilical endothelial cells (HUVECs); here we explore the molecular mechanisms involved. Global transcriptional gene expression profiling of the response of endothelial cells exposed to either LDL or LDL-X revealed that LDL-X activates multiple distinct cellular pathways including the unfolded protein response (UPR).
View Article and Find Full Text PDFObjective: To study the association of PAF-acetyl hydrolase (PAFAH) activity with inflammation, oxidative stress, and atherosclerosis in hypercholesterolemic swine.
Methods And Results: Cholesterol-rich diet feeding of miniature pigs was associated with an increase in PAFAH activity and an increase of the PAFAH to PON1 ratio. PLA2G7 RNA (coding for PAFAH) expression was increased in blood monocytes and plaque macrophages.
Among secreted phospholipases A2 (sPLA2s), human group X sPLA2 (hGX sPLA2) is emerging as a novel attractive therapeutic target due to its implication in inflammatory diseases. To elucidate whether hGX sPLA2 plays a causative role in coronary artery disease (CAD), we screened the human PLA2G10 gene to identify polymorphisms and possible associations with CAD end-points in a prospective study, AtheroGene. We identified eight polymorphisms, among which, one non-synonymous polymorphism R38C in the propeptide region of the sPLA2.
View Article and Find Full Text PDFIncreasing evidence suggests that secreted phospholipases A2 (sPLA2s) play an important role in the pathophysiology of atherosclerosis. Among sPLA2s, the human group X (hGX) enzyme has the highest catalytic activity toward phosphatidylcholine, one of the major phospholipid species of cell membranes and low-density lipoprotein (LDL). Our study examined the presence of hGX sPLA2 in human atherosclerotic lesions and investigated the ability of hGX modified LDL to alter human endothelial cell (HUVEC) function.
View Article and Find Full Text PDFPlatelet Activating Factor (PAF) is a potent mediator of inflammation whose biological activity depends on the acetyl group esterified at the sn-2 position of the molecule. PAF-acetylhydrolase (PAF-AH), a secreted calcium-independent phospholipase A(2), is known to inactivate PAF by formation of lyso-PAF and acetate. However, PAF-AH deficient patients are not susceptible to the biological effects of inhaled PAF in airway inflammation, suggesting that other enzymes may regulate extracellular levels of PAF.
View Article and Find Full Text PDFPlasma Platelet-activating-Factor (PAF)-acetylhydrolase (PAF-AH also named lipoprotein-PLA(2) or PLA(2)G7 gene) is secreted by macrophages, it degrades PAF and oxidation products of phosphatidylcholine produced upon LDL oxidation and/or oxidative stress, and thus is considered as a potentially anti-inflammatory enzyme. Cloning of PAF-AH has sustained tremendous promises towards the use of PAF-AH recombinant protein in clinical situations. The reason for that stems from the numerous animal models of inflammation, atherosclerosis or sepsis, where raising the levels of circulating PAF-AH either through recombinant protein infusion or through the adenoviral gene transfer showed to be beneficial.
View Article and Find Full Text PDFPlatelet-activating-Factor (PAF) and its structural analogues formed upon low density lipoprotein oxidation are involved in atherosclerotic plaque formation and may signal through PAF-receptor (PAF-R) expressed in human macrophages and in certain smooth muscle cells (SMCs) in the media, but rarely in the intima of human plaques. Our aim was to determine which SMC phenotype expresses PAF-R and whether this receptor is functional in cell migration. Circulating SMC progenitors and two phenotypically distinct clones of proliferative, epithelioid phenotype vs contractile, spindle-shaped SMCs from the media of adult internal thoracic artery were studied for the presence of PAF-receptor (PAF-R).
View Article and Find Full Text PDFHuman serum paraoxonase (PON1) has been implicated to play an important role in cardiovascular disease and diabetes. Studies in the literature indicate that PON1 has two different enzyme activities, i.e.
View Article and Find Full Text PDF