Publications by authors named "Sonia de Assis"

Mounting evidence suggests that environmentally induced epigenetic inheritance occurs in mammals and that traits in the progeny can be shaped by parental environmental experiences. Epidemiological studies link parental exposure to environmental toxicants, such as the pesticide DDT, to health phenotypes in the progeny, including low birth and increased risk of chronic diseases later in life. Here, we show that the progeny of male mice exposed to DDT in the pre-conception period are born smaller and exhibit sexual dimorphism in metabolic function, with male, but not female, offspring developing severe glucose intolerance compared to controls.

View Article and Find Full Text PDF

DNA sequence accounts for the majority of disease heritability, including cancer. Yet, not all familial cancer cases can be explained by genetic factors. It is becoming clear that environmentally induced epigenetic inheritance occurs and that the progeny's traits can be shaped by parental environmental experiences.

View Article and Find Full Text PDF

Breast cancer (BC) is the most diagnosed cancer type, accounting for one in eight cancer diagnoses worldwide. Epidemiological studies have shown that obesity is associated with increased risk of BC in post-menopausal women, whereas adiposity reduces the risk of BC in premenopausal women. The mechanistic link between obesity and BC has been examined by combining murine BC models with high-fat diet (HFD) induced obesity.

View Article and Find Full Text PDF

Parental environmental experiences affect disease susceptibility in the progeny through epigenetic inheritance. Pesticides are substances or mixtures of chemicals-some of which are persistent environmental pollutants-that are used to control pests. This review explores the evidence linking parental exposure to pesticides and endocrine disruptors to intergenerational and transgenerational susceptibility of cancer in population studies and animal models.

View Article and Find Full Text PDF

We previously showed that environmentally-induced epigenetic inheritance of cancer occurs in rodent models. For instance, we reported that paternal consumption of an obesity-inducing diet (OID) increased breast cancer susceptibility in the offspring (F1). Nevertheless, it is still unclear whether programming of breast cancer in daughters is due to systemic alterations or mammary epithelium-specific factors and whether the breast cancer predisposition in F1 progeny can be transmitted to subsequent generations.

View Article and Find Full Text PDF

The past decade has made evident that in addition to passing their genetic material at conception, parents also transmit a molecular memory of past environmental experiences, including nutritional status, to their progeny through epigenetic mechanisms. In the 1990s, it was proposed that breast cancer originates . Since then, an overwhelming number of studies in human cohorts and animal models have provided support for that hypothesis.

View Article and Find Full Text PDF

Epidemiological studies suggest that timing of obesity onset - and underlying metabolic dysfunction - is important in determining pancreatic cancer rates: early and young adult abdominal overweight/obesity is more strongly associated with this cancer than obesity that develops later in life. Parental obesity and overweight are associated with metabolic dysfunction and obesity in their children. Here, we evaluated the impact of parental overweight on offspring's susceptibility of pancreatic cancer using the P48Cre/+/KrasG12D/+ mouse model.

View Article and Find Full Text PDF

Background: While many studies have shown that maternal factors in pregnancy affect the cancer risk for offspring, few studies have investigated the impact of paternal exposures on their progeny's risk of this disease. Population studies generally show a U-shaped association between birthweight and breast cancer risk, with both high and low birthweight increasing the risk compared with average birthweight. Here, we investigated whether paternal malnutrition would modulate the birthweight and later breast cancer risk of daughters.

View Article and Find Full Text PDF

Emerging experimental evidence show that fathers' experiences during preconception can influence their daughters' risk of developing breast cancer. Here we describe detailed protocols for investigation in rats and mice of paternally mediated breast cancer risk programming effects.

View Article and Find Full Text PDF

The developmental origins of breast cancer have been considered predominantly from a maternal perspective. Although accumulating evidence suggests a paternal programming effect on metabolic diseases, the potential impact of fathers' experiences on their daughters' breast cancer risk has received less attention. In this chapter, we focus on the developmental origins of breast cancer and examine the emerging evidence for a role of fathers' experiences.

View Article and Find Full Text PDF

Background: Maternal and paternal high-fat (HF) diet intake before and/or during pregnancy increases mammary cancer risk in several preclinical models. We studied if maternal consumption of a HF diet that began at a time when the fetal primordial germ cells travel to the genital ridge and start differentiating into germ cells would result in a transgenerational inheritance of increased mammary cancer risk.

Methods: Pregnant C57BL/6NTac mouse dams were fed either a control AIN93G or isocaloric HF diet composed of corn oil high in n-6 polyunsaturated fatty acids between gestational days 10 and 20.

View Article and Find Full Text PDF

Background: Responses to endocrine therapies vary among patients with estrogen receptor (ER+) breast cancer. We studied whether in utero exposure to endocrine-disrupting compounds might explain these variations.

Methods: We describe a novel ER+ breast cancer model to study de novo and acquired tamoxifen (TAM) resistance.

View Article and Find Full Text PDF

Background: Although males contribute half of the embryo's genome, only recently has interest begun to be directed toward the potential impact of paternal experiences on the health of offspring. While there is evidence that paternal malnutrition may increase offspring susceptibility to metabolic diseases, the influence of paternal factors on a daughter's breast cancer risk has been examined in few studies.

Methods: Male Sprague-Dawley rats were fed, before and during puberty, either a lard-based (high in saturated fats) or a corn oil-based (high in n-6 polyunsaturated fats) high-fat diet (60 % of fat-derived energy).

View Article and Find Full Text PDF

While many studies have shown that maternal weight and nutrition in pregnancy affects offspring's breast cancer risk, no studies have investigated the impact of paternal body weight on daughters' risk of this disease. Here, we show that diet-induced paternal overweight around the time of conception can epigenetically reprogram father's germ-line and modulate their daughters' birth weight and likelihood of developing breast cancer, using a mouse model. Increased body weight was associated with changes in the miRNA expression profile in paternal sperm.

View Article and Find Full Text PDF

The persistent effects of animal fat consumption during pregnancy and nursing on the programming of breast cancer risk among female offspring were studied here. We have previously found that female offspring of rat dams that consumed a lard-based high-fat (HF) diet (60% fat-derived energy) during pregnancy, or during pregnancy and lactation, were at a reduced risk of developing mammary cancer. To better understand the unexpected protective effects of early life lard exposure, we have applied lipidomics and nutrigenomics approaches to investigate the fatty acid profile and global gene expression patterns in the mammary tissue of the female offspring.

View Article and Find Full Text PDF

The present study investigated whether early life exposure to high levels of animal fat increases breast cancer risk in adulthood in rats. Dams consumed a lard-based high-fat (HF) diet (60% fat-derived energy) or an AIN93G control diet (16% fat-derived energy) during gestation or gestation and lactation. Their 7-week-old female offspring were exposed to 7,12-dimethyl-benzo[a]anthracene to induce mammary tumors.

View Article and Find Full Text PDF

Using a preclinical model, we investigated whether excess estradiol (E2) or leptin during pregnancy affects maternal mammary tumorigenesis in rats initiated by administering carcinogen 7,12-dimethylbenz(a)anthracene (DMBA) on day 50. Two weeks later, rats were mated, and pregnant dams were treated daily with 10 μg of 17β-estradiol, 15 μg of leptin, or vehicle from gestation day 8 to 19. Tumor development was assessed separately during weeks 1 to 12 and 13 to 22 after DMBA administration, because pregnancy is known to induce a transient increase in breast cancer risk, followed by a persistent reduction.

View Article and Find Full Text PDF

Women are using estrogens for many purposes, such as to prevent pregnancy or miscarriage, or to treat menopausal symptoms. Estrogens also have been used to treat breast cancer which seems puzzling, since there is convincing evidence to support a link between high lifetime estrogen exposure and increased breast cancer risk. In this review, we discuss the findings that maternal exposure to the synthetic estrogen diethylstilbestrol during pregnancy increases breast cancer risk in both exposed mothers and their daughters.

View Article and Find Full Text PDF

Maternal exposures to environmental factors during pregnancy influence the risk of many chronic adult-onset diseases in the offspring. Here we investigate whether feeding pregnant rats a high-fat (HF)- or ethinyl-oestradiol (EE2)-supplemented diet affects carcinogen-induced mammary cancer risk in daughters, granddaughters and great-granddaughters. We show that mammary tumourigenesis is higher in daughters and granddaughters of HF rat dams and in daughters and great-granddaughters of EE2 rat dams.

View Article and Find Full Text PDF

Pregnancy can both reduce and increase lifetime breast cancer risk, and it also induces a short-term, transient increase in risk. Several biological mechanisms have been proposed to explain the protective effect, including pregnancy-induced increase in circulating estrogen levels leading to reduced estrogen receptor (ER) expression and activity. Persistent changes in ER-regulated gene expression may then alter the response of the breast to postpregnancy hormonal exposures originating, for example, from food.

View Article and Find Full Text PDF

This study investigated whether prepubertal dietary exposure to genistein reduces mammary tumorigenesis by upregulating Brca1 expression in mice. Heterozygous Brca1(+/-) mice and their wild-type (WT) littermates were fed control AIN93G diet or 500 ppm genistein-supplemented AIN93G diet from postnatal day (PND) 15 to PND30 and then switched to AIN93G diet. Prepubertal dietary exposure to genistein reduced 7,12-dimethylbenz(a)anthracene (DMBA)-induced mammary incidence (P = 0.

View Article and Find Full Text PDF

Studies in rodent models of breast cancer show that exposures to dietary/hormonal factors during the in utero and pubertal periods, when the mammary gland undergoes extensive modeling and re-modeling, alter susceptibility to carcinogen-induced mammary tumors. Similar findings have been described in humans: for example, high birthweight increases later risk of developing breast cancer, and dietary intake of soy during childhood decreases breast cancer risk. It is thought that these prenatal and postnatal dietary modifications induce persistent morphological changes in the mammary gland that in turn modify breast cancer risk later in life.

View Article and Find Full Text PDF
Article Synopsis
  • The timing of estrogen exposure in rats influences future breast cancer risk, where in utero exposure to 17β-estradiol (E2) increases risk, but prepubertal exposure decreases it.
  • Estrogen interacts with caveolin-1 (CAV1), potentially a tumor suppressor, altering its expression based on the timing of exposure; lower CAV1 levels correlate with higher cell growth and reduced cell death in utero, while higher levels do the opposite in prepuberty.
  • These findings suggest that estrogen's impact on breast cancer susceptibility is linked to how it alters CAV1 expression and function during critical developmental stages of the mammary gland.
View Article and Find Full Text PDF

Background: Elevated pregnancy hormone levels, such as oestrogen and progesterone, may increase the risk of developing breast cancer both in mothers and offspring. However, the reasons for large inter-individual variations in estrogen and progesterone levels during pregnancy remain unknown. The objectives of this study were to investigate whether a) intakes of total dietary fat, types of fat (monounsaturated: MUFA, polyunsaturated: n-3 and n-6 PUFA, and saturated) and b) gestational weight gain are associated with estradiol and progesterone levels in plasma during pregnancy.

View Article and Find Full Text PDF

The same dietary component, such as fat or phytochemicals in plant foods, can have an opposite effect on breast cancer risk if exposed in utero through a pregnant mother or at puberty. Dietary exposures during pregnancy often have similar effects on breast cancer risk among mothers and their female offspring. High fat intake and obesity are illustrative examples: excessive pregnancy weight gain that increases high birth weight is associated with increased breast cancer risk among mothers and daughters.

View Article and Find Full Text PDF