Biohybrid catalysts that operate in aqueous media are intriguing for systems chemistry. In this paper, we investigate whether control over the self-assembly of biohybrid catalysts can tune their properties. As a model, we use the catalytic activity of functional hybrid molecules consisting of a catalytic H-dPro-Pro-Glu tripeptide, derivatized with fatty acid and nucleobase moieties.
View Article and Find Full Text PDFThe field of prebiotic chemistry has been dedicated over decades to finding abiotic routes towards the molecular components of life. There is nowadays a handful of prebiotically plausible scenarios that enable the laboratory synthesis of most amino acids, fatty acids, simple sugars, nucleotides and core metabolites of extant living organisms. The major bottleneck then seems to be the self-organization of those building blocks into systems that can self-sustain.
View Article and Find Full Text PDFA major challenge for understanding the origins of life is to explore how replication networks can engage in an evolutionary process. Herein, we shed light on this problem by implementing a network constituted by two different types of extremely simple biological components: the amino acid cysteine and the canonical nucleobases adenine and thymine, connected through amide bonds to the cysteine amino group and oxidation of its thiol into three possible disulfides. Supramolecular and kinetic analyses revealed that both self- and mutual interactions between such dinucleobase compounds drive their assembly and replication pathways.
View Article and Find Full Text PDFOne of the major goals in systems chemistry is to create molecular assemblies with emergent properties that are characteristic of life. An interesting approach toward this goal is based on merging different biological building blocks into synthetic systems with properties arising from the combination of their molecular components. The covalent linkage of nucleic acids (or their constituents: nucleotides, nucleosides and nucleobases) with lipids in the same hybrid molecule leads, for example, to the so-called nucleolipids.
View Article and Find Full Text PDF