1,3,4-Oxadiazole derivatives are among the most studied anticancer drugs. Previous studies have analyzed the action of different 1,3,4-oxadiazole derivatives and their effects on cancer cells. This study investigated the characterization of two new compounds named and on HeLa and PC-3 cancer cell lines.
View Article and Find Full Text PDFRhabdomyosarcoma (RMS) is a pediatric tumor, which arises from muscle precursor cells. Recently, it has been demonstrated that Hippo Pathway (Hpo), a pathway that regulates several physiological and biological features, is involved in RMS tumorigenesis. For instance, an upregulation of the Hpo downstream effector Yes-Associated Protein 1 (YAP) leads to the development of embryonal rhabdomyosarcoma (eRMS) in murine activated muscle satellite cells.
View Article and Find Full Text PDFHeart failure of ischemic origin is caused by the presence of a large scar resulting from an acute myocardial infarction. Acute myocardial infarction generally occurs when blood supply to the heart is blocked. Regenerative strategies that limit infarct injury would be able to prevent adverse post-ischemic remodelling and maintain the structural support necessary for effective cardiomyocyte contraction.
View Article and Find Full Text PDFUnlabelled: Peptidyl arginine deiminases (PADI) are a family of enzymes that catalyze the poorly understood posttranslational modification converting arginine residues into citrullines. In this study, the role of PADIs in the pathogenesis of colorectal cancer was investigated. Specifically, RNA expression was analyzed and its association with survival in a cohort of 98 colorectal cancer patient specimens with matched adjacent mucosa and 50 controls from donors without cancer.
View Article and Find Full Text PDFSquamous cell carcinomas have a range of histopathological manifestations. The parameters that determine this clinically observed heterogeneity are not fully understood. Here, we report the generation of a cell culture model that reflects part of this heterogeneity.
View Article and Find Full Text PDFTREX2 is a 3'-DNA exonuclease specifically expressed in keratinocytes. Here, we investigated the relevance and mechanisms of TREX2 in ultraviolet (UV)-induced skin carcinogenesis. TREX2 expression was up-regulated by chronic UV exposure whereas it was de-regulated or lost in human squamous cell carcinomas (SCCs).
View Article and Find Full Text PDFDirect generation of a homogeneous population of skeletal myoblasts from human embryonic stem cells (hESCs) and formation of three-dimensional contractile structures for disease modeling in vitro are current challenges in regenerative medicine. Previous studies reported on the generation of myoblasts from ESC-derived embryoid bodies (EB), but not from undifferentiated ESCs, indicating the requirement for mesodermal transition to promote skeletal myogenesis. Here, we show that selective absence of the SWI/SNF component BAF60C (encoded by SMARCD3) confers on hESCs resistance to MyoD-mediated activation of skeletal myogenesis.
View Article and Find Full Text PDFChromatin remodeling by the SWI/SNF complex is required to activate the transcription of myogenic-specific genes. Our work addressed the details of how SWI/SNF is recruited to myogenic regulatory regions in response to differentiation signals. Surprisingly, the muscle determination factor MyoD and the SWI/SNF subunit BAF60c form a complex on the regulatory elements of MyoD-targeted genes in myogenic precursor cells.
View Article and Find Full Text PDF3' Repair exonuclease (Trex1) is the most abundant mammalian 3' → 5' DNA exonuclease with specificity for ssDNA. Trex1 deficiency has been linked to the development of autoimmune disease in mice and humans, causing Aicardi-Goutières syndrome in the latter. In addition, polymorphisms in Trex1 are associated with systemic lupus erythematosus.
View Article and Find Full Text PDFTranscriptional and posttranscriptional processes regulate expression of genetic networks in response to environmental cues. The extracellular signal-activated p38 MAP kinase (p38) pathway plays a fundamental role in conversion of myoblasts to differentiated myocytes. p38 phosphorylates specific transcription factors and chromatin-associated proteins promoting assembly of the myogenic transcriptome.
View Article and Find Full Text PDFCellular differentiation entails an extensive reprogramming of the genome toward the expression of discrete subsets of genes, which establish the tissue-specific phenotype. This program is achieved by epigenetic marks of the chromatin at particular loci, and is regulated by environmental cues, such as soluble factors and cell-to-cell interactions. How the intracellular cascades convert the myriad of external stimuli into the nuclear information necessary to reprogram the genome toward specific responses is a question of biological and medical interest.
View Article and Find Full Text PDFDuring skeletal myogenesis, genomic reprogramming toward terminal differentiation is achieved by recruiting chromatin-modifying enzymes to muscle-specific loci. The relative contribution of extracellular signaling cascades in targeting these enzymes to individual genes is unknown. Here we show that the differentiation-activated p38 pathway targets the SWI-SNF chromatin-remodeling complex to myogenic loci.
View Article and Find Full Text PDFThe balance between acetylation and deacetylation of histone and nonhistone proteins controls gene expression in a variety of cellular processes, with transcription being activated by acetyltransferases and silenced by deacetylases. We report here the formation and enzymatic characterization of a complex between the acetyltransferase p300 and histone deacetylases. The C/H3 region of p300 was found to co-purify deacetylase activity from nuclear cell extracts.
View Article and Find Full Text PDF