Publications by authors named "Sonia Todorova"

Decoding in the context of brain-machine interface is a prediction problem, with the aim of retrieving the most accurate kinematic predictions attainable from the available neural signals. While selecting models that reduce the prediction error is done to various degrees, decoding has not received the attention that the fields of statistics and machine learning have lavished on the prediction problem in the past two decades. Here, we take a more systematic approach to the decoding prediction problem and search for risk-optimized reverse regression, optimal linear estimation (OLE), and Kalman filter models within a large model space composed of several nonlinear transformations of neural spike counts at multiple temporal lags.

View Article and Find Full Text PDF

Spike-based brain-computer interfaces (BCIs) have the potential to restore motor ability to people with paralysis and amputation, and have shown impressive performance in the lab. To transition BCI devices from the lab to the clinic, decoding must proceed automatically and in real time, which prohibits the use of algorithms that are computationally intensive or require manual tweaking. A common choice is to avoid spike sorting and treat the signal on each electrode as if it came from a single neuron, which is fast, easy, and therefore desirable for clinical use.

View Article and Find Full Text PDF

Objective: Brain-computer interfaces (BCIs) are a promising technology for restoring motor ability to paralyzed patients. Spiking-based BCIs have successfully been used in clinical trials to control multi-degree-of-freedom robotic devices. Current implementations of these devices require a lengthy spike-sorting step, which is an obstacle to moving this technology from the lab to the clinic.

View Article and Find Full Text PDF