Objective: This study aimed to investigate the relationship between cochlear implant (CI) electrode distances to the cochlea's inner wall (the modiolus) and electrical impedance measurements made at the CI's electrode contacts. We introduced a protocol for "three-point impedances" in which we recorded bipolar impedances in response to monopolar stimulation at a neighboring electrode. We aimed to assess the usability of three-point impedances and two existing CI impedance measurement methods (monopolar and four-point impedances) for predicting electrode positioning during CI insertion.
View Article and Find Full Text PDFBackground: Models of auditory nerve fiber (ANF) responses to electrical stimulation are helpful to develop advanced coding for cochlear implants (CIs). A phenomenological model of ANF population responses to CI electrical stimulation with a lower computational complexity compared to a biophysical model would be beneficial to evaluate new CI coding strategies.
New Method: This study presents a phenomenological model which combines four temporal characteristics of ANFs (refractoriness, facilitation, accommodation and spike rate adaptation) in addition to a spatial spread of the electric field.
A bio-inspired coding (BIC) strategy was implemented in this study with the goal of better representation of spectral and temporal information. The auditory nerve fibers' (ANFs) characteristics such as refractory recovery, facilitation and spatial spread were obtained from ECAP data recorded in 11 CI recipients. These characteristics, together with a non-individualized model-derived adaptation effect, were integrated into the BIC strategy for a better selection of channels.
View Article and Find Full Text PDFAuditory nerve fibers' (ANFs) refractoriness and facilitation can be quantified in electrically evoked compound action potentials (ECAPs) recorded via neural response telemetry (NRT). Although facilitation has been observed in animals and human cochlear implant (CI) recipients, no study has modeled this in human CI users until now. In this study, recovery and facilitation effects at different masker and probe levels for three test electrodes (E6, E12 and E18) in 11 CI subjects were recorded.
View Article and Find Full Text PDFJ Neurosci Methods
February 2017
Background: Contemporary speech processing strategies in cochlear implants (CIs) such as the Advanced Combination Encoder (ACE) use a standard Fast Fourier Transform (FFT) filterbank to extract envelopes. The assignment of the FFT bins to approximate the frequency resolution of the basilar membrane is only partly based on physiology, especially since the bins are distributed linearly below 1000Hz and logarithmically above 1000Hz.
New Method: A Gammatone filterbank which provides a closer approximation to the bandwidths of filters in the human auditory system could replace the standard FFT filterbank in the ACE strategy.