The prevalence of hypertension (HTN) among youngsters has increased recently. Often, it is underrecognized owing to a lack of routine blood pressure measurement in many health centers, partly due to the unavailability of instruments and possibly because of this perception that it is not the foremost problem in children. There is less information about the parental perception of childhood HTN from Bangladesh.
View Article and Find Full Text PDFSaudi J Kidney Dis Transpl
August 2017
Aminoglycoside is a widely used antibiotic in neonatal age group at hospital setting in Bangladesh. It has underlying side effect and toxicity which is mostly unseen and ignored. The aim of the study was to evaluate the nephrotoxic effect of aminoglycoside in neonates.
View Article and Find Full Text PDFThe contact of blood with artificial materials generally leads to immediate protein adsorption (fouling), which mediates subsequent biological processes such as platelet adhesion and activation leading to thrombosis. Recent progress in the preparation of surfaces able to prevent protein fouling offers a potential avenue to mitigate this undesirable effect. In the present contribution, we have prepared several types of state-of-the-art antifouling polymer brushes on polycarbonate plastic substrate, and investigated their ability to prevent platelet adhesion and thrombus formation under dynamic flow conditions using human blood.
View Article and Find Full Text PDFMuch biomedical equipment consisting of or containing plastic polymer(s) must come into contact with blood - an interaction that, at the molecular level, may unfortunately prompt biological processes with potentially deleterious, short- or long-term effects such as thrombosis. In the present investigation, this problem is alleviated for poly(vinyl chloride) (PVC) through chemical surface modification with an ultrathin, monoethylene glycol-based coating - a transformation that is characterized using X-ray photoelectron spectroscopy (XPS) supplemented by contact angle goniometry (CAG). Antithrombogenic properties are assessed through calculation (for the first 10 min, and after 60 min) of the surface coverage percentage due to platelet adhesion, aggregation and thrombus formation upon continuous exposure to fluorescently-labelled whole human blood.
View Article and Find Full Text PDFUpon contact with bodily fluids, synthetic materials spontaneously acquire a layer of various species (most notably proteins) on their surface. The concern with respect to biomedical equipment, implants or devices resides in the possibility for biological processes with potentially harmful effects to ensue. In biosensor technology, the issue with this natural fouling phenomenon is that of non-specific adsorption to sensing platforms, which generates an often overwhelming interference signal that prevents the detection, not to mention the quantification, of target analytes present at considerably lower concentration.
View Article and Find Full Text PDFThe unwanted fouling of surfaces by ionic adsorption has received little research attention. In this context, ultrathin organic adlayer surface chemistry-featuring monoethylene glycol based molecular residues-is described that is capable of noticeably decreasing the rate of anion depletion from solution. The strategy is exemplified with glass as the substrate material and fluoride as the anion foulant.
View Article and Find Full Text PDFThe connection between antifouling and surface hydration is a fascinating but daunting question to answer. Herein, we use molecular dynamics (MD) computer simulations to gain further insight into the role of surface functionalities in the molecular-level structuration of water (surface kosmotropicity)--within and atop subnanometric organosilane adlayers that were shown in previous experimental work to display varied antifouling behavior. Our simulations support the hypothesized intimate link between surface hydration and antifouling, in particular the importance of both internal and interfacial hydrophilicity and kosmotropicity.
View Article and Find Full Text PDFSepsis is one of the leading causes of death around the world. The condition occurs when a local infection overcomes the host natural defense mechanism and suddenly spreads into the circulatory system, triggering a vigorous, self-injurious inflammatory host response. The pathogenesis of sepsis is relatively well known, one of the most potent immuno-activator being bacterial lipopolysaccharide (LPS) - also known as 'endotoxin'.
View Article and Find Full Text PDFIn contemporary society, a large percentage of medical equipment coming in contact with blood is manufactured from plastic polymers. Unfortunately, exposure may result in undesirable protein-material interactions that can potentially trigger deleterious biological processes such as thrombosis. To address this problem, we have developed an ultrathin antithrombogenic coating based on monoethylene glycol silane surface chemistry.
View Article and Find Full Text PDFNeutron reflectometry data and modeling support the existence of a relatively thick, continuous phase of water stemming from within an antifouling monoethylene glycol silane adlayer prepared on oxidized silicon wafers. In contrast, this physically distinct (from bulk) interphase is much thinner and only interfacial in nature for the less effective adlayer lacking internal ether oxygen atoms. These results provide further insight into the link between antifouling and surface hydration.
View Article and Find Full Text PDFThe dynamics of serum adsorption on bare and monoethylene glycol adlayer-modified gold surfaces is investigated using acoustic wave physics. Hydration experiments support the pivotal role ascribed to water in the antifouling of surfaces. Behavioural discrepancy is interpreted in terms of difference in water structuring properties (surface kosmotropicity).
View Article and Find Full Text PDFUpon contact with bodily fluids/tissues, exogenous materials spontaneously develop a layer of proteins on their surface. In the case of biomedical implants and equipment, biological processes with deleterious effects may ensue. For biosensing platforms, it is synonymous with an overwhelming background signal that prevents the detection/quantification of target analytes present in considerably lower concentrations.
View Article and Find Full Text PDFWe report herein three unprecedented alkyltrichlorosilane surface modifiers bearing pentafluorophenyl ester (PFP), benzothiosulfonate (BTS), or novel β-propiolactone (BPL) functionalizable terminal groups. Evidence is provided that these molecules can be prepared in very high purity (as assessed by NMR) through a last synthetic step of Pt-catalyzed alkene hydrosilylation then directly employed, without further purification, for the surface modification of quartz and medical grade stainless steel. Subsequent on-surface functionalizations with amine and thiol model molecules demonstrate the potential of these molecular adlayers to be important platforms for future applications in the bioanalytical and biomedical fields.
View Article and Find Full Text PDFThrough systematic structural modification, it is shown that the internal, single oxygen atom of simple monoethylene glycol-based organic films is essential for radically altering the fouling behaviour of quartz against undiluted serum, as characterized by the electromagnetic piezoelectric acoustic sensor. The synergy is strongest with distal hydroxyls.
View Article and Find Full Text PDFHerein is described a label-free immunosensor dedicated to the detection of HIV-2. The biosensor platform is constructed as a mixed self-assembled monolayer-coated quartz wafer onto which HIV-2 immunodominant epitopes are immobilized. The biosensing properties, in terms of specific vs.
View Article and Find Full Text PDF