The use of protein crystals as a source of nanoscale biotemplates has attracted growing interest in recent years owing to their inherent internal order. As these crystals are vulnerable to environmental changes, potential applications require their stabilization by chemical crosslinking. We have previously shown that such intermolecular chemical crosslinking reactions occurring within protein crystals are not random events, but start at preferred crosslinking sites imposed by the alignment of protein molecules and their packing within the crystalline lattice.
View Article and Find Full Text PDFThe increasing numbers of published genomes has enabled extensive survey of protein sequences in nature. During the course of our studies on cellulolytic bacteria that produce multienzyme cellulosome complexes designed for efficient degradation of cellulosic substrates, we have investigated the intermodular cohesin-dockerin interaction, which provides the molecular basis for cellulosome assembly. An early search of the genome databases yielded the surprising existence of a dockerin-like sequence and two cohesin-like sequences in the hyperthermophilic noncellulolytic archaeon, Archaeoglobus fulgidus, which clearly contradicts the cellulosome paradigm.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
January 2010
Family 3 carbohydrate-binding modules (CBM3s) are associated with both cellulosomal scaffoldins and family 9 glycoside hydrolases (GH9s), which are multi-modular enzymes that act on cellulosic substrates. CBM3s bind cellulose. X-ray crystal structures of these modules have established an accepted cellulose-binding mechanism based on stacking interactions between the sugar rings of cellulose and a planar array of aromatic residues located on the CBM3 surface.
View Article and Find Full Text PDFThe incorporation of enzymes into the multi-enzyme cellulosome complex and its anchoring to the bacterial cell surface are dictated by a set of binding interactions between two complementary protein modules: the cohesin and the dockerin. In this work, the X-ray crystal structure of a type-II cohesin from scaffoldin A of Bacteroides cellulosolvens has been determined to a resolution of 1.6 angstroms using molecular replacement.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
September 2003
The N-terminal type II cohesin from the cellulosomal ScaB subunit of Acetivibrio cellulolyticus was crystallized in two different crystal systems: orthorhombic (space group P2(1)2(1)2(1)), with unit-cell parameters a = 37.455, b = 55.780, c = 87.
View Article and Find Full Text PDF