Biophys Chem
November 2024
Rhamnolipids (RLs) and Fengycins (FGs) are biosurfactants with very promising antifungal properties proposed to reduce the use of synthetic pesticides in crops. They are amphiphilic molecules, both known to target the plasma membrane. They act differently on Botrytis cinerea and Sclerotinia sclerotiorum, two close Sclerotiniaceae phytopathogenic fungi.
View Article and Find Full Text PDFRhamnolipids (RLs) are secondary metabolites naturally produced by bacteria of the genera and Burkholderia with biosurfactant properties. A specific interest raised from their potential as biocontrol agents for crop culture protection in regard to direct antifungal and elicitor activities. As for other amphiphilic compounds, a direct interaction with membrane lipids has been suggested as the key feature for the perception and subsequent activity of RLs.
View Article and Find Full Text PDFRhamnolipids (RLs) and fengycins (FGs) are amphiphilic lipid compounds from bacteria secretomes proposed to replace synthetic pesticides for crop protection. They both display plant defense triggering properties and direct antimicrobial activities. In particular, they have well reported antifungal effects against phytopathogenic fungi.
View Article and Find Full Text PDFThe present data profile the large scale transcriptome changes in Col-0 seedlings exposed to mono-rhamnolipids (Mono-RLs) from secretome. Bacterial rhamnolipids (RLs) are biosurfactant known to trigger plant defense mechanisms and have a great potential for crop culture protection as environmental-friendly biocontrol solution. They are thought to interact directly with membrane lipids to induce plant defense gene expression and protection towards phytopathogens.
View Article and Find Full Text PDFPlant genomes generally contain two aldehyde dehydrogenase 10 (ALDH10) genes, which encode NAD+-dependent enzymes. These oxidize various aminoaldehydes that are produced by the catabolism of amino acids and polyamines. ALDH10s are closely related to the animal and fungal trimethylaminobutyraldehyde dehydrogenases (TMABADHs) that are involved in the synthesis of γ-butyrobetaine, the precursor of carnitine.
View Article and Find Full Text PDFThe rapeseed crop () has to cope with fungal diseases that significantly impacts yields. In particular, the fungal pathogen , the causal agent of blackleg disease (also named Phoma stem canker), is a worldwide issue to this crop. Considering environmental concerns, it is essential to propose alternative natural compounds for rapeseed crop protection to reduce chemical fungicide use.
View Article and Find Full Text PDFRhamnolipids (RLs) are potential biocontrol agents for crop culture protection. Their mode of action has been proposed as dual, combining plant protection activation and antifungal activities. The present work focuses on the interaction of natural RLs with plant and fungi membrane models at the molecular scale.
View Article and Find Full Text PDFRhamnolipids (RLs) are amphiphilic molecules naturally produced by some bacteria with a large range of biological activities. Although some studies report their potential interest in plant protection, evaluation of their effects and efficiency on annual crops of worldwide agronomic interest is lacking. The main objective of this work was to investigate their elicitor and protective activities on rapeseed crop species while evaluating their physiological effects.
View Article and Find Full Text PDFL-carnitine is present in all living kingdoms where it acts in diverse physiological processes. It is involved in lipid metabolism in animals and yeasts, notably as an essential cofactor of fatty acid intracellular trafficking. Its physiological significance is poorly understood in plants, but L-carnitine may be linked to fatty acid metabolism among other roles.
View Article and Find Full Text PDFPlant acylcarnitines are present during anabolic processes of lipid metabolism. Their low contents relatively to the corresponding acyl-CoAs suggest that they are associated to specific pools of activated fatty acids. The non-proteinaceous amino acid carnitine exists in plants either as a free form or esterified to fatty acids.
View Article and Find Full Text PDFCarnitine is an essential quaternary ammonium amino acid that occurs in the microbial, plant and animal kingdoms. The role and synthesis of this compound are very well documented in bacteria, fungi and mammals. On the contrary, although the presence of carnitine in plant tissue has been reported four decades ago and information about its biological implication are available, nothing is known about its synthesis in plants.
View Article and Find Full Text PDFCarnitine exists in all living organisms where it plays diverse roles. In animals and yeast, it is implicated in lipid metabolism and is also associated with oxidative stress tolerance. In bacteria, it is a major player in osmotic stress tolerance.
View Article and Find Full Text PDFIn Arabidopsis thaliana cell cultures, the peptaibol alamethicin induced a form of active cell death that was associated with cell shrinkage and DNA fragmentation. The transfer of mature A. thaliana plants from a peptide-free medium to a medium containing a moderate concentration of alamethicin caused the development of lesions in leaves after a few days.
View Article and Find Full Text PDFAmpullosporin A is an antimicrobial, neuroleptic peptaibol, the behavior of which was investigated in different membrane mimetic environments made of egg yolk L-α-phosphatidylcholine. In monolayers, the peptaibol adopted a mixed α/3(10)-helical structure with an in-plane orientation. The binding step was followed by the peptide insertion into the lipid monolayer core.
View Article and Find Full Text PDFThe plant-metabolic response to amphipathic peptides produced by the soil fungi of the genus Trichoderma remains largely unknown. The present investigation was undertaken to examine the death process in alamethicin-treated Arabidopsis thaliana plantlets. The rapid death triggered by alamethicin (at 50 microM) was shown to be associated with protein-synthesis arrest and with specific cleavage of 18S and 25S ribosomal RNA.
View Article and Find Full Text PDFIn Arabidopsis, the basic leucine zipper transcription factor ABI5 activates several late embryogenesis-abundant genes, including AtEm1 and AtEm6. However, the expression of many other seed maturation genes is independent of ABI5. We investigated the possibility that ABI5 homologs also participate in the regulation of gene expression during seed maturation.
View Article and Find Full Text PDF