The ribosomal protein S6 kinase 1 (S6K1) is a relevant effector downstream of the mammalian target of rapamycin complex 1 (mTORC1), best known for its role in the control of lipid homeostasis. Consistent with this, mice lacking the S6k1 gene have a defect in their ability to induce the commitment of fat precursor cells to the adipogenic lineage, which contributes to a significant reduction of fat mass. Here, we assess the therapeutic blockage of S6K1 in diet-induced obese mice challenged with LY2584702 tosylate, a specific oral S6K1 inhibitor initially developed for the treatment of solid tumors.
View Article and Find Full Text PDFNon-alcoholic fatty liver is the most common liver disease worldwide. Here, we show that the mitochondrial protein mitofusin 2 (Mfn2) protects against liver disease. Reduced Mfn2 expression was detected in liver biopsies from patients with non-alcoholic steatohepatitis (NASH).
View Article and Find Full Text PDFCells adapt to nutrient and energy deprivation by inducing autophagy, which is regulated by the mammalian target of rapamycin (mTOR) and AMP-activated protein kinases (AMPKs). We found that cell metabolism significantly influences the ability to induce autophagy, with mitochondrial complex I function being an important factor in the initiation, amplitude, and duration of the response. We show that phenformin or genetic defects in complex I suppressed autophagy induced by mTOR inhibitors, whereas autophagy was enhanced by strategies that increased mitochondrial metabolism.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) ranks second in cancer mortality and has limited therapeutic options. We recently described the synergistic effect of allosteric and ATP-site competitive inhibitors against the mTOR for the treatment of HCC. However, such inhibitors induce hyperglycemia and increase mitochondrial efficiency.
View Article and Find Full Text PDFBackground: Neuroblastoma is a malignant embryonal tumor occurring in young children, consisting of undifferentiated neuroectodermal cells derived from the neural crest. Current therapies for high-risk neuroblastoma are insufficient, resulting in high mortality rates and high incidence of relapse. With the intent to find new therapies for neuroblastomas, we investigated the efficacy of low-doses of actinomycin D, which at low concentrations preferentially inhibit RNA polymerase I-dependent rRNA trasncription and therefore, ribosome biogenesis.
View Article and Find Full Text PDF