Publications by authors named "Sonia Poltoratski"

Spatial processing by receptive fields is a core property of the visual system. However, it is unknown how spatial processing in high-level regions contributes to recognition behavior. As face inversion is thought to disrupt typical holistic processing of information in faces, we mapped population receptive fields (pRFs) with upright and inverted faces in the human visual system.

View Article and Find Full Text PDF

Face-processing occurs across ventral and lateral visual streams, which are involved in static and dynamic face perception, respectively. However, the nature of spatial computations across streams is unknown. Using functional MRI and population receptive field (pRF) mapping, we measured pRFs in face-selective regions.

View Article and Find Full Text PDF

The detection and segmentation of meaningful figures from their background is one of the primary functions of vision. While work in nonhuman primates has implicated early visual mechanisms in this figure-ground modulation, neuroimaging in humans has instead largely ascribed the processing of figures and objects to higher stages of the visual hierarchy. Here, we used high-field fMRI at 7 Tesla to measure BOLD responses to task-irrelevant orientation-defined figures in human early visual cortex ( = 6, four females).

View Article and Find Full Text PDF

Nearly all of the information that reaches the primary visual cortex (V1) of the brain passes from the retina through the lateral geniculate nucleus (LGN) of the thalamus. Although the LGN's role in relaying feedforward signals from the retina to the cortex is well understood [1, 2], the functional role of the extensive feedback it receives from the cortex has remained elusive [3-6]. Here, we investigated whether corticothalamic feedback may contribute to perceptual processing in the LGN in a manner that is distinct from top-down effects of attention [7-10].

View Article and Find Full Text PDF

The visual system employs a sophisticated balance of attentional mechanisms: salient stimuli are prioritized for visual processing, yet observers can also ignore such stimuli when their goals require directing attention elsewhere. A powerful determinant of visual salience is local feature contrast: if a local region differs from its immediate surround along one or more feature dimensions, it will appear more salient. We used high-resolution functional MRI (fMRI) at 7T to characterize the modulatory effects of bottom-up salience and top-down voluntary attention within multiple sites along the early visual pathway, including visual areas V1-V4 and the lateral geniculate nucleus (LGN).

View Article and Find Full Text PDF

Unlabelled: Humans reliably recognize faces across a range of viewpoints, but the neural substrates supporting this ability remain unclear. Recent work suggests that neural selectivity to mirror-symmetric viewpoints of faces, found across a large network of visual areas, may constitute a key computational step in achieving full viewpoint invariance. In this study, we used repetitive transcranial magnetic stimulation (rTMS) to test the hypothesis that the occipital face area (OFA), putatively a key node in the face network, plays a causal role in face viewpoint symmetry perception.

View Article and Find Full Text PDF

It is unknown if the white-matter properties associated with specific visual networks selectively affect category-specific processing. In a novel protocol we combined measurements of white-matter structure, functional selectivity, and behavior in the same subjects. We find two parallel white-matter pathways along the ventral temporal lobe connecting to either face-selective or place-selective regions.

View Article and Find Full Text PDF

Scenes and objects are effortlessly processed and integrated by the human visual system. Given the distinct neural and behavioral substrates of scene and object processing, it is likely that individuals sometimes preferentially rely on one process or the other when viewing canonical "scene" or "object" stimuli. This would allow the visual system to maximize the specific benefits of these 2 types of processing.

View Article and Find Full Text PDF

Using dot displays, Halberda, Sires, and Feigenson (2006) showed that observers could simultaneously encode the numerosity of two spatially overlapping sets and the superset of all items at a glance. With the brief display and the masking used in Halberda et al., the task required observers to encode the colors of each set in order to select and enumerate all the dots in that set.

View Article and Find Full Text PDF