African swine fever (ASF) is a deadly disease of swine currently causing a worldwide pandemic, leading to severe economic consequences for the porcine industry. The control of disease spread is hampered by the limitation of available effective vaccines. Live attenuated vaccines (LAVs) are currently the most advanced vaccine prototypes, providing strong protection against ASF.
View Article and Find Full Text PDFAfrican swine fever virus (ASFV) is causing a worldwide pandemic affecting the porcine industry and leading to important global economic consequences. The virus causes a highly lethal hemorrhagic disease in wild boars and domestic pigs. Lack of effective vaccines hampers the control of virus spread, thus increasing the pressure on the scientific community for urgent solutions.
View Article and Find Full Text PDFAfrican swine fever (ASF) is currently causing a major pandemic affecting the swine industry and protein availability from Central Europe to East and South Asia. No commercial vaccines are available, making disease control dependent on the elimination of affected animals. Here, we show that the deletion of the African swine fever virus (ASFV) E184L gene from the highly virulent ASFV Georgia 2010 (ASFV-G) isolate produces a reduction in virus virulence during the infection in swine.
View Article and Find Full Text PDFAfrican swine fever (ASF) has become the major threat to the global swine industry. Lack of available commercial vaccines complicates the implementation of global control strategies. So far, only live attenuated ASF viruses (ASFV) have demonstrated solid protection efficacy at the experimental level.
View Article and Find Full Text PDFAfrican swine fever (ASF) is today's number one threat for the global swine industry. Neither commercial vaccine nor treatment is available against ASF and, thus far, only live attenuated viruses (LAV) have provided robust protection against lethal ASF virus (ASFV) challenge infections. Identification of ASFV proteins inducing protective immune responses is one of the major challenges to develop safer and efficient subunit vaccines.
View Article and Find Full Text PDFThe development of subunit vaccines against African swine fever (ASF) is mainly hindered by the lack of knowledge regarding the specific ASF virus (ASFV) antigens involved in protection. As a good example, the identity of ASFV-specific CD8 T-cell determinants remains largely unknown, despite their protective role being established a long time ago. Aiming to identify them, we implemented the IFNγ ELISpot as readout assay, using as effector cells peripheral blood mononuclear cells (PBMCs) from pigs surviving experimental challenge with Georgia2007/1.
View Article and Find Full Text PDFAfrican swine fever (ASF) has become the major threat for the global swine industry. Furthermore, the epidemiological situation of African swine fever virus (ASFV) in some endemic regions of Sub-Saharan Africa is worse than ever, with multiple virus strains and genotypes currently circulating in a given area. Despite the recent advances on ASF vaccine development, there are no commercial vaccines yet, and most of the promising vaccine prototypes available today have been specifically designed to fight the genotype II strains currently circulating in Europe, Asia, and Oceania.
View Article and Find Full Text PDFAfrican swine fever virus (ASFV) is the causative agent of a devastating hemorrhagic disease (ASF) that affects both domestic pigs and wild boars. Conversely, ASFV circulates in a subclinical manner in African wild pigs, including warthogs, the natural reservoir for ASFV. Together with genetic differences, other factors might be involved in the differential susceptibility to ASF observed among Eurasian suids (Sus scrofa) and African warthogs (Phacochoerus africanus).
View Article and Find Full Text PDFSwine influenza virus (SIVs) infections cause a significant economic impact to the pork industry. Moreover, pigs may act as mixing vessel favoring genome reassortment of diverse influenza viruses. Such an example is the pandemic H1N1 (pH1N1) virus that appeared in 2009, harboring a combination of gene segments from avian, pig and human lineages, which rapidly reached pandemic proportions.
View Article and Find Full Text PDFSwine influenza viruses (SIVs), the causal agents of swine influenza, are not only important to control due to the economic losses in the swine industry, but also can be pandemic pathogens. Vaccination is one of the most relevant strategies to control and prevent influenza infection. Current human vaccines against influenza induce strain-specific immunity and annual update is required due to the virus antigenic shift phenomena.
View Article and Find Full Text PDFAfrican swine fever (ASF) is a pathology of pigs against which there is no treatment or vaccine. Understanding the equilibrium between innate and adaptive protective responses and immune pathology might contribute to the development of strategies against ASFV. Here we compare, using a proteomic approach, the course of the in vivo infection caused by two homologous strains: the virulent E75 and the attenuated E75CV1.
View Article and Find Full Text PDFAfrican swine fever is a highly contagious viral disease of mandatory declaration to the World Organization for Animal Health (OIE). The lack of available vaccines makes its control difficult; thus, African swine fever virus (ASFV) represents a major threat to the swine industry. Inactivated vaccines do not confer solid protection against ASFV.
View Article and Find Full Text PDFTrimeric autotransporters are surface-exposed proteins of Gram-negative bacteria belonging to the type V secretion system. They are involved in virulence and are targets for vaccine and diagnostic tool development, so optimal systems for their expression and purification are required. In the present study, the impact of the extended leader peptide of the Haemophilus parasuis virulence-associated trimeric autotransporters (VtaA) in its production as recombinant proteins in Escherichia coli was evaluated.
View Article and Find Full Text PDFEnteric viral infections in pigs may cause diarrhea resulting in ill-thrift and substantial economic losses. This study reports the enteric infections with porcine astrovirus type 4 (PAstV4), porcine group A rotavirus (GARV), porcine group C rotavirus (GCRV), porcine circovirus type 2 (PCV2) and porcine kobuvirus (PKoV) in 419 pigs, comprising both healthy and diarrheic animals, from 49 farms in five European countries (Austria, Germany, Hungary, Spain and Sweden). Real-time RT-PCR assays were developed to test fecal samples and to compare the prevalence and viral load in relation to health status, farms of origin and age groups.
View Article and Find Full Text PDFBackground: Hepatitis E virus (HEV) has been reported in the human population and pigs are a recognized reservoir for HEV and a possible source of HEV transmission to humans. Spray-dried porcine plasma (SDPP) is an ingredient commonly used in feed for pigs around the world. Even though processing conditions used to produce SDPP should be adequate to inactivate HEV, it was of interest to analyze commercial SDPP samples for presence of genome and antibodies (AB) against HEV and to retrospectively analyze serum samples collected from pigs used in past experiments that had been fed diets containing either 0% or 8% SDPP to detect potential transmission of HEV as determined by seroconversion.
View Article and Find Full Text PDFUnlabelled: African swine fever is one of the most devastating pig diseases, against which there is no vaccine available. Recent work from our laboratory has demonstrated the protective potential of DNA vaccines encoding three African swine fever viral antigens (p54, p30, and the hemagglutinin extracellular domain) fused to ubiquitin. Partial protection was afforded in the absence of detectable antibodies prior to virus challenge, and survival correlated with the presence of a large number of hemagglutinin-specific CD8(+) T cells in blood.
View Article and Find Full Text PDFHaemophilus parasuis is the causative agent of Glässer's disease, a systemic disorder characterized by polyarthritis, polyserositis and meningitis in pigs. Although it is well known that H. parasuis serovar 5 is the most prevalent serovar associated with the disease, the genetic differences among strains are only now being discovered.
View Article and Find Full Text PDFGlässer's disease is a fibrinous polyserositis and polyarthritis of swine caused by the bacterium Haemophilus parasuis. Control by vaccination has been limited for years due to lack of cross-protection among strains. However, 6 trimeric autotransporters (VtaA) of the Nagasaki strain were shown to be antigenic and gave partial protection to a lethal challenge.
View Article and Find Full Text PDFThe genome of the highly pathogenic Haemophilus parasuis Nagasaki strain (serovar 5) was sequenced to 99 % completion. A genomic comparison with two other pathogenic serovar 5 H. parasuis strains identified six genes per genome (bmaA1-bmaA6) encoding β-barrel monomeric autotransporters, bmaA2 and bmaA3 being pseudogenes in at least one strain.
View Article and Find Full Text PDF