It was previously reported that cauline leaf abscission in Arabidopsis is induced by a cycle of water stress and rewatering, which is regulated by the complex of INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), HAESA (HAE), and HAESA-LIKE2 (HSL2) kinases. However, the involvement of ethylene in this process was ruled out. Because this conclusion contradicts the well-established role of ethylene in organ abscission induced by a cycle of water stress and rewatering, our present study was aimed to reevaluate the possible involvement of ethylene in this process.
View Article and Find Full Text PDFThe KNOTTED1-LIKE HOMEOBOX PROTEIN1 (KD1) gene is highly expressed in flower and leaf abscission zones (AZs), and KD1 was reported to regulate tomato flower pedicel abscission via alteration of the auxin gradient and response in the flower AZ (FAZ). The present work was aimed to further examine how KD1 regulates signaling factors and regulatory genes involved in pedicel abscission, by using silenced KD1 lines and performing a large-scale transcriptome profiling of the FAZ before and after flower removal, using a customized AZ-specific microarray. The results highlighted a differential expression of regulatory genes in the FAZ of KD1-silenced plants compared to the wild-type.
View Article and Find Full Text PDFIn mango ( L.), fruitlet abscission limits productivity. The INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) peptide acts as a key component controlling abscission events in Arabidopsis.
View Article and Find Full Text PDFThe abscission process occurs in a specific abscission zone (AZ) as a consequence of the middle lamella dissolution, cell wall degradation, and formation of a defense layer. The proteins and metabolites related to these processes are secreted by vesicle trafficking through the plasma membrane to the cell wall and middle lamella of the separating cells in the AZ. We investigated this process, since the regulation of vesicle trafficking in abscission systems is poorly understood.
View Article and Find Full Text PDFThe use of auxins to improve the vase life of cut flowers is very limited. Previous studies demonstrated that a pulse treatment of Red Cestrum ( Schlecht.) cut flowers with 2,4-dichlorophenoxyacetic acid (2,4-D) significantly reduced floret bud abscission, whereas 1-naphthaleneacetic acid (NAA) was ineffective.
View Article and Find Full Text PDFEthylene plays a major role in the regulation of flower senescence, including in the ethylene-sensitive 'Sansai Blue' orchid flowers. This cut flower is popular in Thailand due to its light blue big size florets possessing a beautiful shape pattern. In the present study, we further examined the rapid ethylene-induced process of active anthocyanin degradation in cut 'Sansai Blue' flowers, which occurred much before detection of other typical senescence-related symptoms.
View Article and Find Full Text PDFAbscission is a developmental process with important implications for agricultural practices. Ethylene has long been considered as a key regulator of the abscission process. The existence of an ethylene-independent abscission pathway, controlled by the complex of INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) peptide and the HAESA (HAE) and HAESA-like2 (HSL2) kinases, has been proposed, based mainly on observations that organ abscission in ethylene-insensitive mutants was delayed but not inhibited.
View Article and Find Full Text PDFThe Tomato Hybrid Proline-rich Protein () gene was specifically expressed in the tomato () flower abscission zone (FAZ), and its stable antisense silencing under the control of an abscission zone (AZ)-specific promoter, , significantly inhibited tomato pedicel abscission following flower removal. For understanding the THyPRP role in regulating pedicel abscission, a transcriptomic analysis of the FAZ of -silenced plants was performed, using a newly developed AZ-specific tomato microarray chip. Decreased expression of in the silenced plants was already observed before abscission induction, resulting in FAZ-specific altered gene expression of transcription factors, epigenetic modifiers, post-translational regulators, and transporters.
View Article and Find Full Text PDFAbscission of flower pedicels and leaf petioles of tomato (Solanum lycopersicum) can be induced by flower removal or leaf deblading, respectively, which leads to auxin depletion, resulting in increased sensitivity of the abscission zone (AZ) to ethylene. However, the molecular mechanisms that drive the acquisition of abscission competence and its modulation by auxin gradients are not yet known. We used RNA-Sequencing (RNA-Seq) to obtain a comprehensive transcriptome of tomato flower AZ (FAZ) and leaf AZ (LAZ) during abscission.
View Article and Find Full Text PDFAbscission zone (AZ) development and the progression of abscission (detachment of plant organs) have been roughly separated into four stages: first, AZ differentiation; second, competence to respond to abscission signals; third, activation of abscission; and fourth, formation of a protective layer and post-abscission trans-differentiation. Stage three, activation of abscission, is when changes in the cell wall and extracellular matrix occur to support successful organ separation. Most abscission research has focused on gene expression for enzymes that disassemble the cell wall within the AZ and changes in phytohormones and other signaling events that regulate their expression.
View Article and Find Full Text PDFFlowering shoots offer a very convenient and excellent model system for in-depth study of shoot gravitropism in regular stems rather than in special aboveground organs, showing how plants cope with the force of gravity on Earth and change in orientation. Regarding the emerging notion that roots and shoots execute their gravitropic bending by different mechanisms, the use of flowering shoots offers additional confirmation for the suggested shoot-sensing mechanisms initially found in Arabidopsis. As a part of confirming this mechanism, studying this unique model system also enabled elucidation of the sequence of events operating in gravity signalling in shoots.
View Article and Find Full Text PDFIn vivo changes in the cytosolic pH of abscission zone (AZ) cells were visualized using confocal microscopic detection of the fluorescent pH-sensitive and intracellularly trapped dye, 2',7'-bis-(2-carboxyethyl)-5(and-6)-carboxyfluorescein (BCECF), driven by its acetoxymethyl ester. A specific and gradual increase in the cytosolic pH of AZ cells was observed during natural abscission of flower organs in Arabidopsis thaliana and wild rocket (Diplotaxis tenuifolia), and during flower pedicel abscission induced by flower removal in tomato (Solanum lycopersicum Mill). The alkalization pattern in the first two species paralleled the acceleration or inhibition of flower organ abscission induced by ethylene or its inhibitor 1-methylcyclopropene (1-MCP), respectively.
View Article and Find Full Text PDFAbscission occurs specifically in the abscission zone (AZ) tissue as a natural stage of plant development. Previously, we observed delay of tomato (Solanum lycopersicum) leaf abscission when the LX ribonuclease (LX) was inhibited. The known association between LX expression and programmed cell death (PCD) suggested involvement of PCD in abscission.
View Article and Find Full Text PDFThe current abscission model suggests the formation of a post-abscission trans-differentiation of a protective layer as the last step of the process. The present report expands the repertoire of genes activated in the tomato flower abscission zone (AZ), which are likely to be involved in defense responses. We identified four different defense-related genes, including: Cysteine-type endopeptidase, α-Dioxygenase 1 (α-DOX1), HopW-1-1-Interacting protein2 (WIN2), and Stomatal-derived factor-2 (SDF2), that are newly-associated with the late stage of the abscission process.
View Article and Find Full Text PDFWe investigated the involvement of the actomyosin network in the early events of the gravitropic response of cut snapdragon (Antirrhinum majus L.) spikes. The effects of the actin-modulating drug, cytochalasin D (CD) and/or the myosin inhibitor, 2,3-butanedione-2-monoxime (BDM) on amyloplast displacement, lateral auxin transport and consequently on stem bending were examined.
View Article and Find Full Text PDFThe abscission process is initiated by changes in the auxin gradient across the abscission zone (AZ) and is triggered by ethylene. Although changes in gene expression have been correlated with the ethylene-mediated execution of abscission, there is almost no information on the molecular and biochemical basis of the increased AZ sensitivity to ethylene. We examined transcriptome changes in the tomato (Solanum lycopersicum 'Shiran 1335') flower AZ during the rapid acquisition of ethylene sensitivity following flower removal, which depletes the AZ from auxin, with or without preexposure to 1-methylcyclopropene or application of indole-3-acetic acid after flower removal.
View Article and Find Full Text PDFThe microtubule reorientation during the gravitropic bending of cut snapdragon (Antirrhinum majus L.) spikes was investigated. Using indirect immunofluorescence methods, we examined changes in microtubule orientation in the cortex, endodermis and pith tissues of the shoot bending zone, in response to gravistimulation.
View Article and Find Full Text PDFBackground And Aims: A previous study showed that the relative effectiveness of 2,4-dichlorophenoxyacetic acid (2,4-D) compared with that of 1-naphthaleneacetic acid (NAA) in reducing floret bud abscission in cestrum (Cestrum elegans) cut flowers was due to its acropetal transport. The aim of the present study was to examine if the differential effect of these auxins on floret abscission is reflected in the expression of Aux/IAA genes in the floret abscission zone (AZ).
Methods: cDNAs were isolated by PCR-based cloning from the floret AZ of auxin-treated cut flowers.
This study was conducted to unravel a mechanism for the gravitropic curvature response in oat (Avena sativa) shoot pulvini. For this purpose, we examined the downward movement of starch-filled chloroplast gravisensors, differential changes in inositol 1,4,5-trisphosphate (IP(3)) levels, transport of indole-3-acetic acid (IAA) and gravitropic curvature. Upon gravistimulation, the ratio for IAA levels in lower halves versus those in upper halves (L/U) increased from 1.
View Article and Find Full Text PDFGravitropism is a complex multistep process that redirects the growth of roots and various above-ground organs in response to changes in the direction of the gravity vector. The anatomy and morphology of these graviresponding organs indicates a certain spatial separation between the sensing region and the responding one, a situation that strongly suggests the requirement of phytohormones as mediators to coordinate the process. The Cholodny-Went hypothesis suggested auxin as the main mediator of gravitropism.
View Article and Find Full Text PDFThe regulation of gravistimulation-induced ethylene production and its role in gravitropic bending was studied in Antirrhinum majus L. cut flower stems. Gravistimulation increased ethylene production in both lower and upper halves of the stems with much higher levels observed in the lower half.
View Article and Find Full Text PDFThe upward gravitropic bending of cut snapdragon, lupinus and anemone flowering shoots was inhibited by salicylic acid (SA) applied at 0.5 mM and above. This effect was probably not due to acidification of the cytoplasm, since other weak acids did not inhibit bending of snapdragon shoots.
View Article and Find Full Text PDFGrowth patterns of detached spikes of gravistimulated snapdragon (Antirrhinum majus L.) were analyzed in detail. The length increment of 5-mm marked subsections in the upper and lower flanks of the stem-bending zone was measured during gravistimulation using time-lapse photographs.
View Article and Find Full Text PDFThe involvement of the actin and the microtubule cytoskeleton networks in the gravitropic response of snapdragon ( Antirrhinum majus L.) flowering shoots was studied using various specific cytoskeleton modulators. The microtubule-depolymerizing drugs tested had no effect on gravitropic bending.
View Article and Find Full Text PDFThe role of increased oxidation induced by successive stresses of chilling and high light in the induction of leaf abscission was studied in Ixora coccinea plants in relation to auxin metabolism and oxidative processes. Exposure of plants following dark chilling (7 degrees C for 3 days) to high light (500-700 &mgr;mol m-2 s-1 photosynthetically active radiation) for 5 h at 20-25 degrees C enhanced chilling-induced leaf abscission. This abscission was inhibited by pretreatment with the antioxidant butylated hydroxyanisole, alpha-naphthaleneacetic acid or the ethylene action inhibitor, 1-methylcyclopropene.
View Article and Find Full Text PDF