Publications by authors named "Sonia Phene"

Genome-wide association studies (GWASs) require accurate cohort phenotyping, but expert labeling can be costly, time intensive, and variable. Here, we develop a machine learning (ML) model to predict glaucomatous optic nerve head features from color fundus photographs. We used the model to predict vertical cup-to-disc ratio (VCDR), a diagnostic parameter and cardinal endophenotype for glaucoma, in 65,680 Europeans in the UK Biobank (UKB).

View Article and Find Full Text PDF

Purpose: To develop and validate a deep learning (DL) algorithm that predicts referable glaucomatous optic neuropathy (GON) and optic nerve head (ONH) features from color fundus images, to determine the relative importance of these features in referral decisions by glaucoma specialists (GSs) and the algorithm, and to compare the performance of the algorithm with eye care providers.

Design: Development and validation of an algorithm.

Participants: Fundus images from screening programs, studies, and a glaucoma clinic.

View Article and Find Full Text PDF

Deep learning algorithms have been used to detect diabetic retinopathy (DR) with specialist-level accuracy. This study aims to validate one such algorithm on a large-scale clinical population, and compare the algorithm performance with that of human graders. A total of 25,326 gradable retinal images of patients with diabetes from the community-based, nationwide screening program of DR in Thailand were analyzed for DR severity and referable diabetic macular edema (DME).

View Article and Find Full Text PDF