Disrupted in Schizophrenia 1 (DISC1) participates in a wide variety of developmental processes of central neurons. It also serves critical roles that underlie cognitive functioning in adult central neurons. Here we summarize DISC1's general properties and discuss its use as a model system for understanding major mental illnesses (MMIs).
View Article and Find Full Text PDFDepolarisation-secretion coupling is assumed to be dependent only on extracellular calcium ([Ca ] ). Ryanodine receptor (RyR)-sensitive stores in hypothalamic neurohypophysial system (HNS) terminals produce sparks of intracellular calcium ([Ca ] ) that are voltage-dependent. We hypothesised that voltage-elicited increases in intraterminal calcium are crucial for neuropeptide secretion from presynaptic terminals, whether from influx through voltage-gated calcium channels and/or from such voltage-sensitive ryanodine-mediated calcium stores.
View Article and Find Full Text PDFZinc transporters facilitate metal mobilization and compartmentalization, playing a key role in cellular development. Little is known about the mechanisms and pathways of Zn movement between Zn transporters and metalloproteins during myoblast differentiation. We analyzed the differential expression of ZIP and ZnT transporters during C2C12 myoblast differentiation.
View Article and Find Full Text PDFMany different types of purinergic receptors are present in the Hypothalamic-Neurohypophysial System (HNS), which synthesizes and releases vasopressin and oxytocin. The specific location of purinergic receptor subtypes has important functional repercussions for neuronal activity and synaptic output. Yet, until the advent of receptor KOs, this had been hindered by the low selectivity of the available pharmacological tools.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
November 2016
Knockout technology has proven useful for delineating functional roles of specific genes. Here we describe and provide an explanation for striking pathology that occurs in a subset of genetically engineered mice expressing a rat Caβ2a transgene under control of the cardiac α-myosin heavy chain promoter. Lesions were limited to mice homozygous for transgene and independent of native Cacnb2 genomic copy number.
View Article and Find Full Text PDFHighly localized Ca(2+) release events have been characterized in several neuronal preparations. In mouse neurohypophysial terminals (NHTs), such events, called Ca(2+) syntillas, appear to emanate from a ryanodine-sensitive intracellular Ca(2+) pool. Traditional sources of intracellular Ca(2+) appear to be lacking in NHTs.
View Article and Find Full Text PDFμ-Opioid agonists have no effect on calcium currents (I(Ca)) in neurohypophysial terminals when recorded using the classic whole-cell patch-clamp configuration. However, μ-opioid receptor (MOR)-mediated inhibition of I(Ca) is reliably demonstrated using the perforated-patch configuration. This suggests that the MOR-signaling pathway is sensitive to intraterminal dialysis and is therefore mediated by a readily diffusible second messenger.
View Article and Find Full Text PDFBackground: Voltage-gated calcium channels (VGCCs) in rat neurohypophysial terminals exhibit molecular tolerance to alcohol, including desensitization to the drug and increased current density, after 3 weeks of alcohol drinking. Moreover, after this time, terminals from drinking rats exhibit diminished alcohol inhibition of vasopressin (AVP) release.
Methods: We took advantage of organotypic cultures (explants) of the hypothalamo-neurohypophysial system (HNS) to extend our analysis of molecular tolerance to 2 classes of the VGCC.
The hypothalamic-neurohypophysial system (HNS) controls diuresis and parturition through the release of arginine-vasopressin (AVP) and oxytocin (OT). These neuropeptides are chiefly synthesized in hypothalamic magnocellular somata in the supraoptic and paraventricular nuclei and are released into the blood stream from terminals in the neurohypophysis. These HNS neurons develop specific electrical activity (bursts) in response to various physiological stimuli.
View Article and Find Full Text PDFOpioids modulate the electrical activity of magnocellular neurons (MCN) and inhibit neuropeptide release at their terminals in the neurohypophysis. We have previously shown that micro-opioid receptor (MOR) activation induces a stronger inhibition of oxytocin (OT) than vasopressin (AVP) release from isolated MCN terminals. This higher sensitivity of OT release is due, at least in part, to the selective targeting of R-type calcium channels.
View Article and Find Full Text PDFThe objective of this study was to develop a method that could reliably determine the arginine vasopressin (AVP) and/or oxytocin (OT) content of individual rat neurohypophysial terminals (NHT) >or=5 microm in diameter, the size used for electrophysiological recordings. We used a commercially available, highly sensitive enzyme-linked immunoassay (ELISA) kit with a sensitivity of 0.25 pg to AVP and of 1.
View Article and Find Full Text PDF