Type III secretion systems (T3SSs) are syringe-like protein complexes used by some of the most harmful bacterial pathogens to infect host cells. While the T3SS filament, a long hollow conduit that bridges between bacteria and host cells, has been characterized structurally, very little is known about its physical properties. These filaments should endure shear and normal stresses imposed by the viscous mucosal flow during infection within the intestinal tract.
View Article and Find Full Text PDFBackground: Plasmodium falciparum (Pf) is the leading protozoan causing malaria, the most devastating parasitic disease. To ensure transmission, a small subset of Pf parasites differentiate into the sexual forms (gametocytes). Since the abundance of these essential parasitic forms is extremely low within the human host, little is currently known about the molecular regulation of their sexual differentiation, highlighting the need to develop tools to investigate Pf gene expression during this fundamental mechanism.
View Article and Find Full Text PDFBackground: Web-based platforms can be powerful tools for research dissemination. By leveraging the advantages of mass media and interpersonal channels of communication, Web-based dissemination platforms may improve awareness about, and subsequent adoption of, evidence-based practices (EBPs). Digital dissemination strategies can augment traditional dissemination models, improving stakeholder access to digestible and actionable information and promoting translation of EBPs.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
February 2018
The type III secretion system (T3SS) is a multi-protein complex that plays a central role in the virulence of many Gram-negative bacterial pathogens. In enteropathogenic Escherichia coli, a prevalent cause of diarrheal diseases, the needle complex base of the T3SS is formed by multi-rings: two concentric inner-membrane rings made by the two oligomerizing proteins (EscD and EscJ), and an outer ring made of a single oligomerizing protein (EscC). Although the oligomerization activity of these proteins is critical for their function and can, therefore, affect the virulence of the pathogen, the mechanisms underlying the oligomerization of these proteins have yet to be identified.
View Article and Find Full Text PDF