Philos Trans A Math Phys Eng Sci
October 2022
Modern epidemiological analyses to understand and combat the spread of disease depend critically on access to, and use of, data. Rapidly evolving data, such as data streams changing during a disease outbreak, are particularly challenging. Data management is further complicated by data being imprecisely identified when used.
View Article and Find Full Text PDFDuring evolution, genomes are shaped by a plethora of forces that can leave characteristic signatures. A common goal when studying diverging populations is to detect the signatures of selective sweeps, which can be rather difficult in complex demographic scenarios, such as under secondary contact. Moreover, the detection of selective sweeps, especially in whole-genome data, often relies heavily on a narrow set of summary statistics that are affected by a multitude of factors, frequently leading to false positives and false negatives.
View Article and Find Full Text PDFKnowledge gaps in spatiotemporal changes in mangrove diversity and composition have obstructed mangrove conservation programs across the tropics, but particularly in the Sundarbans (10,017 km), the world's largest remaining natural mangrove ecosystem. Using mangrove tree data collected from Earth's largest permanent sample plot network at four historical time points (1986, 1994, 1999 and 2014), this study establishes spatially explicit baseline biodiversity information for the Sundarbans. We determined the spatial and temporal differences in alpha, beta, and gamma diversity in three ecological zones (hypo-, meso-, and hypersaline) and also uncovered changes in the mangroves' overall geographic range and abundances therein.
View Article and Find Full Text PDFHow we measure diversity can have important implications for understanding the impacts of anthropogenic pressure on ecosystem processes and functioning. Functional diversity quantifies the range and relative abundance of functional traits within a given community and, as such, may provide a more mechanistic understanding of ecosystems. Here, we use a novel approach to examine how lepidopteran richness and diversity, weighted by species abundance, differ between habitats under different disturbance regimes (highly disturbed non-native plantations and less disturbed broadleaf woodlands), both with and without constraining by similarity due to shared taxonomy or functional traits.
View Article and Find Full Text PDF