Mitochondria-endoplasmic reticulum (ER) contact sites (MERCs) emerged to play critical roles in numerous cellular processes, and their dysregulation has been associated to neurodegenerative disorders. Mutations in the SPG4 gene coding for spastin are among the main causes of hereditary spastic paraplegia (HSP). Spastin binds and severs microtubules, and the long isoform of this protein, namely M1, spans the outer leaflet of ER membrane where it interacts with other ER-HSP proteins.
View Article and Find Full Text PDFMethicillin-resistant Staphylococcus aureus (MRSA) is the most common causative agent of acute bacterial skin and skin-structure infections (ABSSSI), one of the major challenges to the health system worldwide. Although the use of antibiotics as the first line of intervention for MRSA-infected wounds is recommended, important side effects could occur, including cytotoxicity or immune dysregulation, thus affecting the repair process. Here, we show that the oxazolidinone antibiotic linezolid (LZD) impairs wound healing by aberrantly increasing interleukin 1 β (IL-1β) production in keratinocytes.
View Article and Find Full Text PDFObjectives: To evaluate the in vitro effect of tofacitinib on autophagy activity of psoriatic arthritis (PsA) fibroblast-like synoviocytes (FLS), and to confirm its activity on inflammatory and invasive properties of FLS and synovial cells, deepening the impact on mitochondrial function.
Methods: FLS, peripheral blood mononuclear cells (PBMCs), and synovial cells from active PsA patients were cultured with tofacitinib 1 μM or vehicle control for 24 h. Autophagy was measured by Western blot and by fluorescence microscopy.
Neuroinflammation represents a dynamic process of defense and protection against the harmful action of infectious agents or other detrimental stimuli in the central nervous system (CNS). However, the uncontrolled regulation of this physiological process is strongly associated with serious dysfunctional neuronal issues linked to the progression of CNS disorders. Moreover, it has been widely demonstrated that neuroinflammation is linked to epilepsy, one of the most prevalent and serious brain disorders worldwide.
View Article and Find Full Text PDFThe NLRP3 inflammasome is a critical component of innate immunity that senses diverse pathogen- and host-derived molecules. However, its aberrant activation has been associated with the pathogenesis of multiple diseases, including cancer. In this study, we designed and synthesized a series of aryl sulfonamide derivatives (ASDs) to inhibit the NLRP3 inflammasome.
View Article and Find Full Text PDFSubstrate degradation by the ubiquitin proteasome system (UPS) in specific membrane compartments remains elusive. Here, we show that the interplay of two lipid modifications and PDE6δ regulates compartmental substrate targeting via the SCF. FBXL2 is palmitoylated in a prenylation-dependent manner on cysteines 417 and 419 juxtaposed to the CaaX motif.
View Article and Find Full Text PDFUncontrolled inflammatory response arising from the tumor microenvironment (TME) significantly contributes to cancer progression, prompting an investigation and careful evaluation of counter-regulatory mechanisms. We identified a trimeric complex at the mitochondria-associated membranes (MAMs), in which the purinergic P2X7 receptor - NLRP3 inflammasome liaison is fine-tuned by the tumor suppressor PML. PML downregulation drives an exacerbated immune response due to a loss of P2X7R-NLRP3 restraint that boosts tumor growth.
View Article and Find Full Text PDFBackground & Aims: Determining outcomes using the total neoadjuvant therapy (TNT) in patients with local advanced rectal cancer is important for stratifying patients according to expected outcomes in future studies in the era of treatment combination. The present meta-analysis estimated the pathological complete response, disease-free survival, and overall survival probabilities of rectal cancer patients and identified predictors of outcomes.
Methods: Studies reporting pathological complete response rate and time-dependent outcomes (progression or death) after total neoadjuvant treatment of locally advanced rectal cancer (LARC) were identified in MEDLINE through January 2022.
Plant-derived remedies rich in chalcone-based compounds have been known for centuries in the treatment of specific diseases, and nowadays, the fascinating chalcone framework is considered a useful and, above all, abundant natural chemotype. Velutone F, a new chalconoid from , exhibits a potent effect as an NLRP3-inflammasome inhibitor; the search for new natural/non-natural lead compounds as NLRP3 inhibitors is a current topical subject in medicinal chemistry. The details of our work toward the synthesis of velutone F and the unknown non-natural regioisomers are herein reported.
View Article and Find Full Text PDFPatient prognosis is a critical consideration in the treatment decision-making process. Conventionally, patient outcome is related to tumor characteristics, the cancer spread, and the patients' conditions. However, unexplained differences in survival time are often observed, even among patients with similar clinical and molecular tumor traits.
View Article and Find Full Text PDFUp to now, no role has been associated with VRAC channels in T cells. In a recent paper published in Nature Immunology, LRRC8C has been described as an essential component of VRAC in T cells. These data raise the intriguing possibility that the LRRC8C-STING-p53 signaling axis may represent a new inhibitory pathway in T cells that controls their function and adaptive immunity.
View Article and Find Full Text PDFPsoriatic arthritis (PsA) is a chronic inflammatory immune-mediated disease with a burdensome impact on quality of life and substantial healthcare costs. To date, pharmacological interventions with different mechanisms of action, including conventional synthetic (cs), biological (b), and targeted synthetic (ts) disease-modifying antirheumatic drugs (DMARDs), have been proven efficacious, despite a relevant proportion of failures. The current approach in clinical practice and research is typically "predictive": the expected response is based on stratification according to clinical, imaging, and laboratory data, with a "heuristic" approach based on "trial and error".
View Article and Find Full Text PDFYes-associated protein (YAP) has emerged as a key component in cancer signaling and is considered a potent oncogene. As such, nuclear YAP participates in complex and only partially understood molecular cascades that are responsible for the oncogenic response by regulating multiple processes, including cell transformation, tumor growth, migration, and metastasis, and by acting as an important mediator of immune and cancer cell interactions. YAP is finely regulated at multiple levels, and its localization in cells in terms of cytoplasm-nucleus shuttling (and vice versa) sheds light on interesting novel anticancer treatment opportunities and putative unconventional functions of the protein when retained in the cytosol.
View Article and Find Full Text PDFBackground: Immune checkpoint inhibitors (ICI) plus radiotherapy (RT) have been suggested as an emerging combination in non-small cell lung cancer (NSCLC) patients. However, little is known about the magnitude of its benefits and potential clinical predictors.
Objective: To assess the effects of this combination on the increase in overall and progression-free survival.
Inflammasomes are multiprotein complexes that regulate the maturation and secretion of the proinflammatory cytokines interleukin-1beta (IL-1β and interleukin-18 (IL-18) in response to various intracellular stimuli. As a member of the inflammasomes family, NLRP3 is the most studied and best characterized inflammasome and has been shown to be involved in several pathologies. Recent findings have made it increasingly apparent that the NLRP3 inflammasome may also play a central role in tumorigenesis, and it has attracted attention as a potential anticancer therapy target.
View Article and Find Full Text PDFMitochondria are well known to participate in multiple aspects of tumor formation and progression. They indeed can alter the susceptibility of cells to engage regulated cell death, regulate pro-survival signal transduction pathways and confer metabolic plasticity that adapts to specific tumor cell demands. Interestingly, a relatively poorly explored aspect of mitochondria in neoplastic disease is their contribution to the characteristic genomic instability that underlies the evolution of the disease.
View Article and Find Full Text PDFBasal expression of the P2X7 receptor (P2X7R) improves mitochondrial metabolism, Adenosine 5'-triphosphate (ATP) synthesis, and overall fitness of immune and non-immune cells. We investigated P2X7R contribution to energy metabolism and subcellular localization in fibroblasts (mouse embryo fibroblasts and HEK293 human fibroblasts), mouse microglia (primary brain microglia, and the N13 microglia cell line), and heart tissue. The P2X7R localizes to mitochondria, and its lack (1) decreases basal respiratory rate, ATP-coupled respiration, maximal uncoupled respiration, resting mitochondrial potential, mitochondrial matrix Ca level, (2) modifies expression pattern of oxidative phosphorylation enzymes, and (3) severely affects cardiac performance.
View Article and Find Full Text PDFMitochondria are dynamic organelles that have essential metabolic activity and are regarded as signalling hubs with biosynthetic, bioenergetics and signalling functions that orchestrate key biological pathways. However, mitochondria can influence all processes linked to oncogenesis, starting from malignant transformation to metastatic dissemination. In this review, we describe how alterations in the mitochondrial metabolic status contribute to the acquisition of typical malignant traits, discussing the most recent discoveries and the many unanswered questions.
View Article and Find Full Text PDFSEPN1-related myopathy (SEPN1-RM) is a muscle disorder due to mutations of the SEPN1 gene, which is characterized by muscle weakness and fatigue leading to scoliosis and life-threatening respiratory failure. Core lesions, focal areas of mitochondria depletion in skeletal muscle fibers, are the most common histopathological lesion. SEPN1-RM underlying mechanisms and the precise role of SEPN1 in muscle remained incompletely understood, hindering the development of biomarkers and therapies for this untreatable disease.
View Article and Find Full Text PDFThe main features that are commonly attributed to mitochondria consist of the regulation of cell proliferation, ATP generation, cell death and metabolism. However, recent scientific advances reveal that the intrinsic dynamicity of the mitochondrial compartment also plays a central role in proinflammatory signaling, identifying these organelles as a central platform for the control of innate immunity and the inflammatory response. Thus, mitochondrial dysfunctions have been related to severe chronic inflammatory disorders.
View Article and Find Full Text PDFMitochondria and endoplasmic reticulum (ER) are fundamental in the control of cell physiology regulating several signal transduction pathways. They continuously communicate exchanging messages in their contact sites called MAMs (mitochondria-associated membranes). MAMs are specific microdomains acting as a platform for the sorting of vital and dangerous signals.
View Article and Find Full Text PDFGlioblastoma multiforme (GBM) is characterized by poor prognosis despite an aggressive therapeutic strategy. In recent years, many advances have been achieved in the field of glioblastoma biology. Here we try to summarize the main clinical and biological factors impacting clinical prognostication and therapy of GBM patients.
View Article and Find Full Text PDF