Publications by authors named "Sonia Mayo"

The gene encodes an orphan transcription factor of the steroid-thyroid hormone-retinoid receptor superfamily. This review focuses on the clinical findings associated with the pathogenic variants so far reported, including three unreported cases. Also, its role in neurodegenerative diseases, such as Parkinson's or Alzheimer's disease, is examined, as well as a brief exploration on recent proposals to develop novel therapies for these neurological diseases based on small molecules that could modulate transcriptional activity.

View Article and Find Full Text PDF

N-type voltage-gated calcium channel controls the release of neurotransmitters from neurons. The association of other voltage-gated calcium channels with epilepsy is well-known. The association of N-type voltage-gated calcium channels and pain has also been established.

View Article and Find Full Text PDF

Epilepsy is a neurological disorder that affects more than 50 million people. Its etiology is unknown in approximately 60% of cases, although the existence of a genetic factor is estimated in about 75% of these individuals. Hundreds of genes involved in epilepsy are known, and their number is increasing progressively, especially with next-generation sequencing techniques.

View Article and Find Full Text PDF

Non-invasive prenatal testing (NIPT) is currently the best screening test for fetal chromosome abnormalities with the highest sensitivity and specificity and can be done from 10 weeks gestation. We report a detection of 44.7 Mb duplication at 11p15.

View Article and Find Full Text PDF

Eyelid myoclonia with absences (EMA), also known as Jeavons syndrome (JS) is a childhood onset epileptic syndrome with manifestations involving a clinical triad of absence seizures with eyelid myoclonia (EM), photosensitivity (PS), and seizures or electroencephalogram (EEG) paroxysms induced by eye closure. Although a genetic contribution to this syndrome is likely and some genetic alterations have been defined in several cases, the genes responsible for have not been identified. In this review, patients diagnosed with EMA (or EMA-like phenotype) with a genetic diagnosis are summarized.

View Article and Find Full Text PDF

Background: Alzheimer's (AD) and Parkinson's diseases (PD) show deposits of improperly folded modified proteins. Protein expression mechanisms are involved since the early stages. Several studies evaluated epigenomics and proteomics profiles in these patients, with promising results.

View Article and Find Full Text PDF

Objective: The aim of this study was to determine if the use of different mappers for NIPT may vary the results considerably.

Methods: Peripheral blood was collected from 217 pregnant women, 58 pathological (34 pregnancies with trisomy 21, 18 with trisomy 18, and 6 with trisomy 13) and 159 euploid. MPS was performed following a manufacturer's modified protocol of semiconductor sequencing.

View Article and Find Full Text PDF

We report on three nonrelated patients with intellectual disability and CNVs that give rise to three new chimeric genes. All the genes forming these fusion transcripts may have an important role in central nervous system development and/or in gene expression regulation, and therefore not only their deletion or duplication but also the resulting chimeric gene may contribute to the phenotype of the patients. Deletions and duplications are usually pathogenic when affecting dose-sensitive genes.

View Article and Find Full Text PDF

The disruption of genes involved in epigenetic regulation is well known to cause Intellectual Disability (ID). We reported a custom microarray study that interrogated among others, the epigenetic regulatory gene-class, at single exon resolution. Here we elaborate on identified intragenic CNVs involving epigenetic regulatory genes; specifically discussing those in three genes previously unreported in ID etiology-ARID2, KDM3A, and ARID4B.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focused on diagnosing syndromic intellectual disability by sequencing a large panel of 1256 genes in 92 patients who had negative previous genetic analyses, aiming to identify mutations linked to the condition.
  • - A definitive diagnosis was achieved in 29 families, discovering mutations in 25 different genes, with KMT2D, KMT2A, and MED13L being the most frequently mutated, leading to a diagnostic yield of 39%.
  • - The research highlights the effectiveness of next-generation sequencing in identifying genetic variations, but also emphasizes the need for better clinical interpretation of these findings and further exploration of unknown genes associated with intellectual disability.
View Article and Find Full Text PDF

Background: Mutations in the X-linked gene MED12 cause at least three different, but closely related, entities of syndromic intellectual disability. Recently, a new syndrome caused by MED13L deleterious variants has been described, which shows similar clinical manifestations including intellectual disability, hypotonia, and other congenital anomalies.

Methods: Genotyping of 1,256 genes related with neurodevelopment was performed by next-generation sequencing in three unrelated patients and their healthy parents.

View Article and Find Full Text PDF

Intellectual disability (ID) is a heterogeneous disorder with an unknown molecular etiology in many cases. Previously, X-linked ID (XLID) studies focused on males because of the hemizygous state of their X chromosome. Carrier females are generally unaffected because of the presence of a second normal allele, or inactivation of the mutant X chromosome in most of their cells (skewing).

View Article and Find Full Text PDF

Background: Only 15 point mutations in NFIX gene have been reported so far, nine of them cause the Marshall-Smith syndrome (MSS) and the remaining mutations lead to an overgrowth disorder with a less severe phenotype, defined as Sotos-like.

Methods: The clinical findings in three patients with MSS and two patients with a Sotos-like phenotype are presented. Analysis of the NFIX gene was performed both by conventional or next-generation sequencing.

View Article and Find Full Text PDF

Alterations of epigenetic mechanisms, and more specifically imprinting modifications, could be responsible of neurodevelopmental disorders such as intellectual disability (ID) or autism together with other associated clinical features in many cases. Currently only eight imprinting syndromes are defined in spite of the fact that more than 200 genes are known or predicted to be imprinted. Recent publications point out that some epimutations which cause imprinting disorders may affect simultaneously different imprinted loci, suggesting that DNA-methylation may have been altered more globally.

View Article and Find Full Text PDF

The NSDHL gene encodes 3β-hydroxysteroid dehydrogenase involved in one of the later steps of the cholesterol biosynthetic pathway. Mutations in this gene can cause CHILD syndrome (OMIM 308050) and CK syndrome (OMIM 300831). CHILD syndrome is an X-linked dominant, male lethal disorder caused by mutations in the NSDHL gene that result in the loss of the function of the NSDHL protein.

View Article and Find Full Text PDF

This paper describes the presence of an interstitial pure duplication of 19p13.3 (4.95 Mb) in a patient with intellectual disability studied by array-CGH which was initially considered as a de novo alteration.

View Article and Find Full Text PDF

Ring chromosomes are circular structures formed as a result of breaks in the chromosome arms and the fusion of the proximal broken ends with a loss of distal material, or by fusion of dysfunctional telomeres without any loss. The mechanism underlying this process has not yet been sufficiently explained. Commonly, rings occur as acquired genetic abnormalities; however, sometimes they are found as constitutional aberrations with a prevalence of around 1:50,000 live births.

View Article and Find Full Text PDF

Background: Nowadays the microarray technology allows whole-genome analysis with a high resolution and performance for the genetic diagnosis in any patient with intellectual disability or autism spectrum disorder. However in the immediate future, with the development of massive sequencing systems for application at clinical diagnosis, it will be necessary to have clinical criteria to guide studies.

Aim: To perform an exhaustive clinical definition of patients with pathogenic copy number variations in order to establish the clinical criteria most suggestive of this kind of genomic rearrangements.

View Article and Find Full Text PDF

Here we report on two unrelated male patients with syndromic intellectual disability (ID) due to duplication at Xq13.3-q21.1, a region of about 6 Mb and 25 genes.

View Article and Find Full Text PDF

Background And Objective: An important proportion of neurodevelopmental disorders (NDDs) results from unbalanced genomic alterations (duplication or deletion). These chromosomal rearrangements may be considered as de novo, despite they arise as a result of a balanced rearrangement not detected in a phenotypically normal parent. Therefore, if the rearrangements are inherited, the recurrence risk and the genetic counseling of these cases change radically.

View Article and Find Full Text PDF

We previously reported on nonrecurrent overlapping duplications at Xp11.22 in individuals with nonsyndromic intellectual disability (ID) harboring HSD17B10, HUWE1, and the microRNAs miR-98 and let-7f-2 in the smallest region of overlap. Here, we describe six additional individuals with nonsyndromic ID and overlapping microduplications that segregate in the families.

View Article and Find Full Text PDF

Context: Genomic imprinting is the modification of the genome so that genes from only one (rather than two) of the parental alleles are expressed. The mechanism underlying imprinting is epigenetic, occurring via changes in DNA methylation and histone modifications rather than through alterations in the DNA sequence. To date, nine different imprinting disorders have been clinically and genetically identified and a considerable research effort has been focused on determining the cause of the corresponding methylation defects.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionl7tfjnil9uudnb7pqsnibgj2fhjuf6pu): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once