Publications by authors named "Sonia Martinez-Arca"

Impairments in signal transduction, leading to the regulation of cell proliferation, differentiation, or migration are frequently the cause of cancer. Since the accurate spatial and temporal location of their components is crucial to ensure the correct regulation of these signaling pathways, it could be anticipated that defects in intracellular trafficking are at the base of certain neoplasias. However, the trafficking of many components of pathways frequently up-regulated in cancers, such as the epidermal growth factor receptor (EGFR) pathway, are largely unknown.

View Article and Find Full Text PDF

Membrane fusion depends on the formation of a complex of four SNARE motifs, three that bear a central glutamine and are localized in the target membrane (t-SNARE) and one that bears an arginine and is localized in the donor vesicle (v-SNARE). We have characterized the arginine 56 to proline mutant (R56P) of synaptobrevin-2 (Sb). SbR56P was blocked at the plasma membrane in association with the endogenous plasma membrane t-SNARE due to an inhibition of SNARE complex dissociation, suggesting that the plasma membrane is its first target.

View Article and Find Full Text PDF

The membrane-trafficking pathway mediated by tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP) in neurons is still unknown. We show herein that TI-VAMP expression is necessary for neurite outgrowth in PC12 cells and hippocampal neurons in culture. TI-VAMP interacts with plasma membrane and endosomal target soluble N-ethylmaleimide-sensitive factor attachment protein receptors, suggesting that TI-VAMP mediates a recycling pathway.

View Article and Find Full Text PDF

SNARE [soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptor] proteins are essential for membrane fusion but their regulation is not yet fully understood. We have previously shown that the amino-terminal Longin domain of the v-SNARE TI-VAMP (tetanus neurotoxin-insensitive vesicle-associated membrane protein)/VAMP7 plays an inhibitory role in neurite outgrowth. The goal of this study was to investigate the regulation of TI-VAMP as a model of v-SNARE regulation.

View Article and Find Full Text PDF

SNARE proteins are key mediators of membrane fusion. Their function in ensuring compartmental specificity of membrane fusion has been suggested by in vitro studies but not demonstrated in vivo. We show here that ectopic expression of the plasma membrane t-SNARE heavy chain syntaxin 1 in the endoplasmic reticulum induces the redistribution of its cognate vesicular SNAREs, TI-VAMP and cellubrevin, and its light chain t-SNARE SNAP-23.

View Article and Find Full Text PDF