Publications by authors named "Sonia Marco"

Objective: The aim of this study was to determine French psychiatrists' level of general knowledge about dissociative identity disorder and to evaluate their perceptions of this condition.

Methods: In this study, French psychiatrists were invited by e-mail to answer an online survey. The questionnaire asked about their general knowledge and perceptions of dissociative identity disorder.

View Article and Find Full Text PDF

Huntington's disease (HD) is a dominantly inherited neurodegenerative disease caused by expansion of a polyglutamine tract in the huntingtin protein. HD symptoms include severe motor, cognitive, and psychiatric impairments that result from dysfunction and later degeneration of medium-sized spiny neurons (MSNs) in the striatum. A key early pathogenic mechanism is dysregulated synaptic transmission due to enhanced surface expression of juvenile NMDA-type glutamate receptors containing GluN3A subunits, which trigger the aberrant pruning of synapses formed by cortical afferents onto MSNs.

View Article and Find Full Text PDF

Rictor associates with mTOR to form the mTORC2 complex, which activity regulates neuronal function and survival. Neurodegenerative diseases are characterized by the presence of neuronal dysfunction and cell death in specific brain regions such as for example Huntington's disease (HD), which is characterized by the loss of striatal projection neurons leading to motor dysfunction. Although HD is caused by the expression of mutant huntingtin, cell death occurs gradually suggesting that neurons have the capability to activate compensatory mechanisms to deal with neuronal dysfunction and later cell death.

View Article and Find Full Text PDF

Age-inappropriate expression of juvenile NMDA receptors (NMDARs) containing GluN3A subunits has been linked to synapse loss and death of spiny projection neurons of the striatum (SPNs) in Huntington's disease (HD). Here we show that suppressing GluN3A expression prevents a multivariate synaptic transmission phenotype that precedes morphological signs at early prodromal stages. We start by confirming that afferent fiber stimulation elicits larger synaptic responses mediated by both AMPA receptors and NMDARs in SPNs in the YAC128 mouse model of HD.

View Article and Find Full Text PDF

Huntington's disease is caused by an expanded polyglutamine repeat in the huntingtin protein (HTT), but the pathophysiological sequence of events that trigger synaptic failure and neuronal loss are not fully understood. Alterations in N-methyl-D-aspartate (NMDA)-type glutamate receptors (NMDARs) have been implicated. Yet, it remains unclear how the HTT mutation affects NMDAR function, and direct evidence for a causative role is missing.

View Article and Find Full Text PDF

Selective control of receptor trafficking provides a mechanism for remodeling the receptor composition of excitatory synapses, and thus supports synaptic transmission, plasticity, and development. GluN3A (formerly NR3A) is a nonconventional member of the NMDA receptor (NMDAR) subunit family, which endows NMDAR channels with low calcium permeability and reduced magnesium sensitivity compared with NMDARs comprising only GluN1 and GluN2 subunits. Because of these special properties, GluN3A subunits act as a molecular brake to limit the plasticity and maturation of excitatory synapses, pointing toward GluN3A removal as a critical step in the development of neuronal circuitry.

View Article and Find Full Text PDF

Excitotoxicity due to excessive activation of glutamate receptors is a primary mediator of cell death in acute and chronic neurological disorders, and NMDA-type glutamate receptors (NMDARs) are thought to be involved. NMDARs assemble from heteromeric combinations of GluN1, GluN2 and GluN3 subunits, yielding a variety of receptor subtypes that differ in biophysical properties, signaling, and synaptic targeting. Inclusion of inhibitory GluN3 subunits reduces Ca2+ influx via NMDAR channels and alters their synaptic targeting, thus modifying the two hallmarks of NMDARs that are critical for their roles on neuronal death and survival.

View Article and Find Full Text PDF

Alzheimer's disease (AD) and ageing are associated with impaired learning and memory, and recent findings point toward modulating chromatin remodeling through histone acetylation as a promising therapeutic strategy. Here we report that systemic administration of the HDAC inhibitor 4-phenylbutyrate (PBA) reinstated fear learning in the Tg2576 mouse model of AD. Tg2576 mice develop age-dependent amyloid pathology and cognitive decline that closely mimics disease progression in humans.

View Article and Find Full Text PDF

Alzheimer's disease is characterised by neuronal loss, numerous intraneuronal deposits of neurofibrillary tangles, senile plaques, and cerebrovascular amyloid deposits. The major component of senile plaques and cerebrovascular deposits is the 39-43 amino acid beta-amyloid peptide (Abeta). The effects of Abeta on cerebral endothelium and thus the blood-brain barrier remain unclear.

View Article and Find Full Text PDF

Deficits of neurotrophic support caused by reduced levels of brain-derived neurotrophic factor (BDNF) have been implicated in the selective vulnerability of striatal neurones in Huntington's disease (HD). Therapeutic strategies based on BDNF administration have been proposed to slow or prevent the disease progression. However, the effectiveness of BDNF may depend on the proper expression of its receptor TrkB.

View Article and Find Full Text PDF

Glial cell line-derived neurotrophic factor (GDNF) family members have been proposed as candidates for the treatment of Parkinson's disease because they protect nigral dopaminergic neurons against various types of insult. However, the efficiency of these factors depends on the availability of their receptors after damage. We evaluated the changes in the expression of c-Ret, GFRalpha1, and GFRalpha2 in the substantia nigra pars compacta in a rat model of Parkinson's disease by in situ hybridization.

View Article and Find Full Text PDF

Glial cell line-derived neurotrophic factor (GDNF) family ligands are important regulators of neuronal development and maintenance of the connectivity in the basal ganglia and show neuroprotective activities in several paradigms of brain injury. The mRNAs of two members of this family, GDNF and neurturin, and also their receptors have been detected in the basal ganglia. In the present work, we analyzed the time course changes in the expression of these neurotrophic factors and receptors in the adult rat striatum, induced by quinolinate or kainate excitotoxicity.

View Article and Find Full Text PDF

Excitotoxicity has been involved in the pathogenesis of several neurodegenerative disorders. Using intrastriatal quinolinic acid (QUIN) injection as an animal model of Huntington's disease, we attempt to identify the neurotransmitter phenotype of striatal projection neurons protected by neurturin (NRTN). Control or NRTN-secreting cell lines were grafted in the striatum before QUIN injection and striatal projection neurons were examined by retrograde Fluorogold labeling and in situ hybridization.

View Article and Find Full Text PDF