is a facultative intracellular pathogen that causes shigellosis, a human diarrheal disease characterized by the destruction of the colonic epithelium. Novel antimicrobial compounds to treat infections are urgently needed due to the proliferation of bacterial antibiotic resistance and lack of new effective antimicrobials in the market. Our approach to find compounds that block the virulence pathway has three potential advantages: (i) resistance development should be minimized due to the lack of growth selection pressure, (ii) no resistance due to environmental antibiotic exposure should be developed since the virulence pathways are not activated outside of host infection, and (iii) the normal intestinal microbiota, which do not have the targeted virulence pathways, should be unharmed.
View Article and Find Full Text PDFMutations in the kelch propeller domain (K13 propeller) of parasites from Southeast Asia are associated with reduced susceptibility to artemisinin. We exposed -cultured stage V gametocytes from Cambodian K13 propeller mutant parasites to dihydroartemisinin and evaluated the inhibition of male gamete formation in an exflagellation inhibition assay (EIA). Gametocytes with the R539T and C580Y K13 propeller alleles were less susceptible to dihydroartemisinin and had significantly higher 50% inhibitory concentrations (ICs) than did gametocytes with wild-type alleles.
View Article and Find Full Text PDFPlasmodium falciparum Standard Membrane Feeding Assay (PfSMFA) is the current gold standard mosquito based confirmatory transmission blocking (TrB) assay for human malaria. However, owing to its complexity only selected gametocytocidal molecules are progressed into SMFA. Predictive tools for evaluation of TrB behavior of compounds in SMFA would be extremely beneficial, but lack of substantially large data sets from many mosquito feeds preempts the ability to perform correlations between outcomes from in vitro assays and SMFA.
View Article and Find Full Text PDFPlasmodium falciparum stage V gametocytes are responsible for parasite transmission, and drugs targeting this stage are needed to support malaria elimination. We here screen the Tres Cantos Antimalarial Set (TCAMS) using the previously developed P. falciparum female gametocyte activation assay (Pf FGAA), which assesses stage V female gametocyte viability and functionality using Pfs25 expression.
View Article and Find Full Text PDFBackground: Drugs that kill or inhibit Plasmodium gametocytes in the human host could potentially synergize the impact of other chemotherapeutic interventions by blocking transmission. To develop such agents, reliable methods are needed to study the in vitro activity of compounds against gametocytes. This study describes a novel assay for characterizing the activity of anti-malarial drugs against the later stages of Plasmodium falciparum gametocyte development using real-time PCR (qPCR).
View Article and Find Full Text PDFOro-pharyngeal dysphagia commonly occurs in patients with infantile onset Pompe disease (IOPD), which is a rare recessive neuromuscular disorder caused by deficiency of the lysosomal enzyme acid alpha-glucosidase. Without treatment, death occurs by 1 year of age from cardiorespiratory failure. Enzyme replacement therapy (ERT) has been used to increase life expectancy, however emerging developmental and medical morbidities have become apparent.
View Article and Find Full Text PDFThe discovery of new antimalarials with transmission blocking activity remains a key issue in efforts to control malaria and eventually eradicate the disease. Recently, high-throughput screening (HTS) assays have been successfully applied to Plasmodium falciparum asexual stages to screen millions of compounds, with the identification of thousands of new active molecules, some of which are already in clinical phases. The same approach has now been applied to identify compounds that are active against P.
View Article and Find Full Text PDFWith the aim of fuelling open-source, translational, early-stage drug discovery activities, the results of the recently completed antimycobacterial phenotypic screening campaign against Mycobacterium bovis BCG with hit confirmation in M. tuberculosis H37Rv were made publicly accessible. A set of 177 potent non-cytotoxic H37Rv hits was identified and will be made available to maximize the potential impact of the compounds toward a chemical genetics/proteomics exercise, while at the same time providing a plethora of potential starting points for new synthetic lead-generation activities.
View Article and Find Full Text PDFBackground: Current anti-malarial drugs have been selected on the basis of their activity against the symptom-causing asexual blood stage of the parasite. Which of these drugs also target gametocytes, in the sexual stage responsible for disease transmission, remains unknown. Blocking transmission is one of the main strategies in the eradication agenda and requires the identification of new molecules that are active against gametocytes.
View Article and Find Full Text PDFMalaria is one of the deadliest infectious diseases in the world, with the eukaryotic parasite Plasmodium falciparum causing the most severe form of the disease. Discovery of new classes of antimalarial drugs has become an urgent task to counteract the increasing problem of drug resistance. Screening directly for compounds able to inhibit parasite growth in vitro is one of the main approaches the malaria research community is now pursuing for the identification of novel antimalarial drug leads.
View Article and Find Full Text PDFDrug-induced phospholipidosis (PLD) is characterized by the excessive accumulation of phospholipids in lysosomes. It is accompanied by intracellular retention of drug that could be associated with increased cytotoxicity. Drug-induced PLD is recognized as a significant challenge for drug development, depending on the severity of the effect it could be reversible or caused cell death.
View Article and Find Full Text PDF