Publications by authors named "Sonia Lilly"

Plants of the genus are thought to be rarely infected by viruses. To date, only alfalfa mosaic virus, cucumber mosaic virus, tobacco mosaic virus, and tomato spotted wilt virus have been reported in this host. In this study, we identified for the first time raspberry ringspot virus (RpRSV) and phlox virus M (PhlVM) in lavender using herbaceous indexing, enzyme-linked immunosorbent assay, and high-throughput sequencing.

View Article and Find Full Text PDF

Streptocarpus (Cape primrose, family Gesneriaceae) is a genus of plants native to Southern Africa commonly grown indoors for their foliage and trumpet-shaped flowers. In Aoteroa New Zealand (NZ) to date, no viruses have been reported to infect plants of the Gesneriaceae (Veerakone et al. 2015).

View Article and Find Full Text PDF

To protect New Zealand's unique ecosystems and primary industries, imported plant materials must be constantly monitored at the border for high-threat pathogens. Techniques adopted for this purpose must be robust, accurate, rapid, and sufficiently agile to respond to new and emerging threats. Polymerase chain reaction (PCR), especially real-time PCR, remains an essential diagnostic tool but it is now being complemented by high-throughput sequencing using both Oxford Nanopore and Illumina technologies, allowing unbiased screening of whole populations.

View Article and Find Full Text PDF

Carnation (Dianthus caryophyllus) is a popular ornamental plant widely used as a cut flower and in landscaping. In New Zealand, several viruses are known to infect plants of the genus Dianthus: arabis mosaic virus, carnation etched ring virus (CERV), carnation latent virus, carnation mottle virus, carnation necrotic fleck virus, carnation ringspot virus, carnation vein mottle virus and cucumber mosaic virus (Veerakone et al. 2015).

View Article and Find Full Text PDF

To our knowledge, there are no reports that demonstrate the use of host molecular markers for the purpose of detecting generic plant virus infection. Two approaches involving molecular indicators of virus infection in the model plant were examined: the accumulation of small RNAs (sRNAs) using a microfluidics-based method (Bioanalyzer); and the transcript accumulation of virus-response related host plant genes, suppressor of gene silencing 3 () and calcium-dependent protein kinase 3 () by reverse transcriptase-quantitative PCR (RT-qPCR). The microfluidics approach using sRNA chips has previously demonstrated good linearity and good reproducibility, both within and between chips.

View Article and Find Full Text PDF

Background: Contamination of the uterine lumen with bacteria is ubiquitous in cattle after parturition. Some animals develop endometritis and have reduced fertility but others have no uterine disease and readily conceive. The present study tested the hypothesis that postpartum cattle that develop persistent endometritis and infertility are unable to limit the inflammatory response to uterine bacterial infection.

View Article and Find Full Text PDF

Escherichia coli infection of the endometrium causes uterine disease after parturition and is associated with prolonged luteal phases of the ovarian cycle in cattle. Termination of the luteal phase is initiated by prostaglandin F(2alpha) (PGF) from oxytocin-stimulated endometrial epithelial cells. Compared with normal animals, the peripheral plasma of animals with E.

View Article and Find Full Text PDF

Oestrogens are pivotal in ovarian follicular growth, development and function, with fundamental roles in steroidogenesis, nurturing the oocyte and ovulation. Infections with bacteria such as Escherichia coli cause infertility in mammals at least in part by perturbing ovarian follicle function, characterised by suppression of oestradiol production. Ovarian follicle granulosa cells produce oestradiol by aromatisation of androstenedione from the theca cells, under the regulation of gonadotrophins such as FSH.

View Article and Find Full Text PDF

Prostaglandins have a central role in many endocrine functions in mammals, including regulation of the life span of the corpus luteum by prostaglandin F(2alpha) (PGF) and prostaglandin E2 (PGE), which are secreted by the uterine endometrium. However, the uterus is readily infected with bacteria such as Escherichia coli, which disrupt luteolysis. Immune cells detect E.

View Article and Find Full Text PDF