Amyloid-β (Aβ) aggregation and neuroinflammation are consistent features in Alzheimer's disease (AD) and strong candidates for the initiation of neurodegeneration. S100B is one of the most abundant proinflammatory proteins that is chronically up-regulated in AD and is found associated with senile plaques. This recognized biomarker for brain distress may, thus, play roles in amyloid aggregation which remain to be determined.
View Article and Find Full Text PDFExtracellular hemoglobin, a byproduct of hemolysis, can release its prosthetic heme groups upon oxidation. This produces metabolically active heme that is exchangeable between acceptor proteins, macromolecules and low molecular weight ligands, termed here labile heme. As it accumulates in plasma labile heme acts in a pro-oxidant manner and regulates cellular metabolism while exerting pro-inflammatory and cytotoxic effects that foster the pathogenesis of hemolytic diseases.
View Article and Find Full Text PDFBiochim Biophys Acta
April 2016
Transthyretin (TTR) has a neuroprotective role in the central nervous system (CNS) in Alzheimer's disease (AD) and cerebral ischemia. Increased levels of TTR and activated insulin-like growth factor I receptor (IGF-IR) are associated with reduced neurodegeneration in an AD mouse model. In the present study, we found that TTR and IGF-I have a synergistic effect on activation of one of the IGF-IR signaling pathways.
View Article and Find Full Text PDFFront Cell Neurosci
July 2015
More than 20 distinct gene loci have so far been implicated in amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder characterized by progressive neurodegeneration of motor neurons (MN) and death. Most of this distinct set of ALS-related proteins undergoes toxic deposition specifically in MN for reasons which remain unclear. Here we overview a recent body of evidence indicative that mutations in ALS-related proteins can disrupt fundamental Ca(2+) signalling pathways in MN, and that Ca(2+) itself impacts both directly or indirectly in many ALS critical proteins and cellular processes that result in MN neurodegeneration.
View Article and Find Full Text PDFSuperoxide dismutase 1 (SOD1) is a Cu/Zn metalloenzyme that aggregates in amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder. Correct metal insertion during SOD1 biosynthesis is critical to prevent misfolding; however Zn(2+) can bind to the copper-site leading to an aberrantly metallated protein. These effects of Zn(2+) misligation on SOD1 aggregation remain to be explored, even though Zn(2+) levels are upregulated in ALS motor neurons.
View Article and Find Full Text PDFCalcium deregulation is a central feature among neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Calcium accumulates in the spinal and brain stem motor neurons of ALS patients triggering multiple pathophysiological processes which have been recently shown to include direct effects on the aggregation cascade of superoxide dismutase 1 (SOD1). SOD1 is a Cu/Zn enzyme whose demetallated form is implicated in ALS protein deposits, contributing to toxic gain of function phenotypes.
View Article and Find Full Text PDFS100 proteins are small dimeric calcium-binding proteins which control cell cycle, growth and differentiation via interactions with different target proteins. Intrinsic disorder is a hallmark among many signaling proteins and S100 proteins have been proposed to contain disorder-prone regions. Interestingly, some S100 proteins also form amyloids: S100A8/A9 forms fibrils in prostatic inclusions and S100A6 fibrillates in vitro and seeds SOD1 aggregation.
View Article and Find Full Text PDFSuperoxide dismutase 1 (SOD1) aggregation is one of the pathological markers of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder. The underlying molecular grounds of SOD1 pathologic aggregation remains obscure as mutations alone are not exclusively the cause for the formation of protein inclusions. Thus, other components in the cell environment likely play a key role in triggering SOD1 toxic aggregation in ALS.
View Article and Find Full Text PDFImbalance in metal ion homeostasis is a hallmark in neurodegenerative conditions involving protein deposition, and amyotrophic lateral sclerosis (ALS) is no exception. In particular, Ca(2+) dysregulation has been shown to correlate with superoxide dismutase-1 (SOD1) aggregation in a cellular model of ALS. Here we present evidence that SOD1 aggregation is enhanced and modulated by Ca(2+).
View Article and Find Full Text PDFS100A6 is a small EF-hand calcium- and zinc-binding protein involved in the regulation of cell proliferation and cytoskeletal dynamics. It is overexpressed in neurodegenerative disorders and a proposed marker for Amyotrophic Lateral Sclerosis (ALS). Following recent reports of amyloid formation by S100 proteins, we investigated the aggregation properties of S100A6.
View Article and Find Full Text PDFThe integral endoplasmic reticulum (ER)-membrane protein VAP-B interacts with various lipid-transfer/binding proteins containing an FFAT motif through its N-terminal MSP domain. A genetic mutation within its MSP domain, P56S, was identified in familial forms of motor neuron diseases. This mutation induces the formation of insoluble VAP-B(P56S) protein aggregates by an unknown mechanism.
View Article and Find Full Text PDFRieske proteins and Rieske ferredoxins are present in the three domains of life and are involved in a variety of cellular processes. Despite their functional diversity, these small Fe-S proteins contain a highly conserved all-beta fold, which harbors a [2Fe-2S] Rieske center. We have identified a novel subtype of Rieske ferredoxins present in hyperthermophilic archaea, in which a two-cysteine conserved SKTPCX((2-3))C motif is found at the C-terminus.
View Article and Find Full Text PDFAs the stability of drugs of abuse in oral fluid can affect drug testing results, we evaluated this parameter together with recovery for the principal drugs of abuse in two collection devices typically used to ship oral fluid samples to testing laboratories. Two different samples were prepared using Cozart Drug Detection System and Intercept oral fluid collection devices with 600 ng/mL of 6-monoacetylmorphine (6-MAM) and cocaine and 240 ng/mL of Delta-tetrahydrocannabinol (THC) and 11-nor-9-carboxy-Delta-tetrahydrocannabinol (THCCOOH). Samples were sent at ambient temperature by courier to the participating laboratories (n = 19) the same day of preparation.
View Article and Find Full Text PDFLactoperoxidase (LPO) is a structurally complex and stable mammalian redox enzyme. Here we aim at evaluating the influence of ionic interactions and how these intertwine with the structural dynamics, stability and activity of LPO. In this respect, we have compared LPO guanidinium hydrochloride (GdmCl) and urea denaturation pathways and performed a detailed investigation on the effects of pH on the LPO conformational dynamics and stability.
View Article and Find Full Text PDFBiochim Biophys Acta
November 2008
Metal centres play an important structural role in maintaining the native conformation of a protein. Here we use biophysical methods to investigate what is the relative contribution of iron-sulfur clusters in respect to ionic interactions in a thermophilic di-cluster ferredoxin model. Changes in protonation affect both the stability and the conformational dynamics of the protein fold.
View Article and Find Full Text PDFDetailed structural models of di-cluster seven-iron ferredoxins constitute a valuable resource for folding and stability studies relating the metal cofactors' role in protein stability. The here reported, hemihedric twinned crystal structure at 2.0 A resolution from Acidianus ambivalens ferredoxin, shows an integral 103 residues, physiologically relevant native form composed by a N-terminal extension comprising a His/Asp Zn(2+) site and the ferredoxin (betaalphabeta)(2) core, which harbours intact clusters I and II, a [3Fe-4S](1+/0) and a [4Fe-4S](2+/1+) centres.
View Article and Find Full Text PDFLactoperoxidase (LPO) belongs to the mammalian peroxidase family and catalyzes the oxidation of halides, pseudo-halides and a number of aromatic substrates at the expense of hydrogen peroxide. Despite the complex physiological role of LPO and its potential involvement in carcinogenic mechanisms, cystic fibrosis and inflammatory processes, little is known on the folding and structural stability of this protein. We have undertaken an investigation of the conformational dynamics and catalytic properties of LPO during thermal unfolding, using complementary biophysical techniques (differential scanning calorimetry, electron spin resonance, optical absorption, fluorescence and circular dichroism spectroscopies) together with biological activity assays.
View Article and Find Full Text PDFThermal perturbation of the dicluster ferredoxin from Acidianus ambivalens was investigated employing a toolbox of spectroscopic methods. FTIR and visible CD were used for assessing changes of the secondary structure and coarse alterations of the [3Fe4S] and [4Fe4S] cluster moieties, respectively. Fine details of the disassembly of the metal centers were revealed by paramagnetic NMR and resonance Raman spectroscopy.
View Article and Find Full Text PDFThe biological insertion of iron-sulfur clusters (Fe-S) involves the interaction of (metallo) chaperons with a partly folded target polypeptide. In this respect, the study of nonnative protein conformations in iron-sulfur proteins is relevant for the understanding of the folding process and cofactor assembly. We have investigated the formation of a molten globule state in the [3Fe4S][4Fe4S] ferredoxin from the thermophilic archaeon Acidianus ambivalens (AaFd), which also contains a structural zinc site.
View Article and Find Full Text PDFZinc centers play a key role as important structure determinants in a variety of proteins including ferredoxins (Fd). Here, we exploit the availability of two highly similar ferredoxin isoforms from the thermophile Sulfolobus metallicus, which differ in the residues involved in coordinating a His/Asp zinc site that ties together the protein core with its N-terminal extension, to investigate the effect of the absence of this site on ferredoxin folding. The conformational properties of the zinc-containing (FdA) and zinc-lacking (FdB) isoforms were investigated using visible absorption and tryptophan fluorescence emission.
View Article and Find Full Text PDFRecent studies on the chemical alkaline degradation of ferredoxins have contributed to the hypothesis that linear three-iron centres are commonly observed as degradation intermediates of iron-sulfur clusters. In this work we assess the validity of this hypothesis. We studied different proteins containing iron-sulfur clusters, iron-sulfur centres and di-iron centres with respect to their chemical degradation kinetics at high pH, in the presence and absence of exogenous sulfide, to investigate the possible formation of linear three-iron centres during protein unfolding.
View Article and Find Full Text PDFThe ferredoxin from the thermoacidophile Acidianus ambivalens is a representative of the archaeal family of di-cluster [3Fe-4S][4Fe-4S] ferredoxins. Previous studies have shown that these ferredoxins are intrinsically very stable and led to the suggestion that upon protein unfolding the iron-sulfur clusters degraded via linear three-iron sulfur center species, with 610 and 520 nm absorption bands, resembling those observed in purple aconitase. In this work, a kinetic and spectroscopic investigation on the alkaline chemical denaturation of the protein was performed in an attempt to elucidate the degradation pathway of the iron-sulfur centers in respect to protein unfolding events.
View Article and Find Full Text PDFThe SOR (sulphur oxygenase reductase) is the initial enzyme in the sulphur-oxidation pathway of Acidianus ambivalens. Expression of the sor gene in Escherichia coli resulted in active, soluble SOR and in inclusion bodies from which active SOR could be refolded as long as ferric ions were present in the refolding solution. Wild-type, recombinant and refolded SOR possessed indistinguishable properties.
View Article and Find Full Text PDF