In chilling conditions (5°C), salicylic acid (SA)-deficient mutants (sid2, eds5 and NahG) of Arabidopsis thaliana produced more biomass than wild type (Col-0), whereas the SA overproducer cpr1 was extremely stunted. The hypothesis that these phenotypes were reflected in metabolism was explored using 600 MHz (1) H nuclear magnetic resonance (NMR) analysis of unfractionated polar shoot extracts. Biomass-related metabolic phenotypes were identified as multivariate data models of these NMR 'fingerprints'.
View Article and Find Full Text PDFThe ability to track changes in the levels of many metabolites in plants has great utility in a number of biological contexts. A metabolomics experiment usually requires the comparison of different varieties in either a functional genomics context or in response to perturbation by an external treatment. Such treatments can result in subtle changes in the final chemical signature of the plant tissue, and therefore, any unwanted variance produced in the generation of that tissue must be minimised.
View Article and Find Full Text PDFIn any metabolomics experiment, robustness and reproducibility of data collection is of vital importance. These become more important in collaborative studies where data is to be collected on multiple instruments. With minimisation of variance in sample preparation and instrument performance it is possible to elucidate even subtle differences in metabolite fingerprints due to genotype or biological treatment.
View Article and Find Full Text PDFThe outcome of bacterial infection in plants is determined by the ability of the pathogen to successfully occupy the apoplastic space and deliver a constellation of effectors that collectively suppress basal and effector-triggered immune responses. In this study, we examined the metabolic changes associated with establishment of disease using analytical techniques that interrogated a range of chemistries. We demonstrated clear differences in the metabolome of Arabidopsis thaliana leaves infected with virulent Pseudomonas syringae within 8 h of infection.
View Article and Find Full Text PDFIncreasing demands for productivity together with environmental concerns about fertilizer use dictate that the future sustainability of agricultural systems will depend on improving fertilizer use efficiency. Characterization of the biological processes responsible for efficient fertilizer use will provide tools for crop improvement under reduced inputs. Transcriptomic and metabolomic approaches were used to study the impact of nitrogen (N) and sulphur (S) deficiency on N and S remobilization from senescing canopy tissues during grain filling in winter wheat (Triticum aestivum).
View Article and Find Full Text PDF