Publications by authors named "Sonia Irigoyen"

Long intergenic non-coding RNAs (lincRNAs) are emerging as regulators of protein-coding genes (PCGs) in many plant and animal developmental processes and stress responses. In this study, we characterize the genome-wide lincRNAs in potatoes responsive to a vascular bacterial disease presumably caused by Candidatus Liberibacter solanacearum (CLso). Approximately 4397 lincRNAs were detected in healthy and infected potato plants at various stages of zebra chip (ZC) disease progression.

View Article and Find Full Text PDF

Aims: Huanglongbing (citrus greening) is a plant disease putatively caused by the unculturable Gram-negative bacterium Candidatus Liberibacter asiaticus (CLas), and it has caused severe damage to citrus plantations worldwide. There are no definitive treatments for this disease, and conventional disease control techniques have shown limited efficacy. This work presents an in silico evaluation of using specifically targeting anti-microbial peptides (STAMPs) consisting of a targeting segment and an antimicrobial segment to inhibit citrus greening by inhibiting the BamA protein of CLas, which is an outer membrane protein crucial for bacterial viability.

View Article and Find Full Text PDF

"Candidatus Liberibacter spp." are insect-vectored, fastidious, and vascular-limited phytopathogens. They are the presumptive causal agents of potato zebra chip, tomato vein clearing, and the devastating citrus greening disease worldwide.

View Article and Find Full Text PDF

Potato zebra chip (ZC) disease, associated with the uncultured phloem-limited bacterium, Liberibacter solanacearum (Lso), is transmitted by the potato psyllid . Potato ZC disease poses a significant threat to potato production worldwide. Current management practices mainly rely on the control of the psyllid to limit the spread of Lso.

View Article and Find Full Text PDF

Sugarcane ( spp.) is a prominent source of sugar and serves as bioenergy/biomass feedstock globally. Multiple biotic and abiotic stresses, including drought, salinity, and cold, adversely affect sugarcane yield.

View Article and Find Full Text PDF

The Arabidopsis (Arabidopsis thaliana) BTB-TAZ DOMAIN PROTEIN 2 (BT2) contains an N-terminal BTB domain, a central TAZ zinc-finger protein-protein interaction domain, and a C-terminal calmodulin-binding domain. We previously demonstrated that BT2 regulates telomerase activity and mediates multiple responses to nutrients, hormones, and abiotic stresses in Arabidopsis. Here, we describe the essential role of BT2 in activation of genes by multimerized Cauliflower mosaic virus 35S (35S) enhancers.

View Article and Find Full Text PDF

Biotic and abiotic stresses cause substantial changes in plant biochemistry. These changes are typically revealed by high-performance liquid chromatography (HPLC) and mass spectroscopy-coupled HPLC (HPLC-MS). This information can be used to determine underlying molecular mechanisms of biotic and abiotic stresses in plants.

View Article and Find Full Text PDF

Potato ( L.) is an important food crop worldwide. As the demand for fresh and processed potato products is increasing globally, there is a need to manage and control devastating diseases such as zebra chip (ZC).

View Article and Find Full Text PDF

has recently emerged as a premier model plant for monocot biology, akin to We previously reported genome-wide transcriptomic and alternative splicing changes occurring in during compatible infections with (PMV) and its satellite virus (SPMV). Here, we dissected the role of phenylalanine ammonia lyase 1 (PAL1), a key enzyme for phenylpropanoid and salicylic acid (SA) biosynthesis and the induction of plant defenses. Targeted metabolomics profiling of PMV-infected and PMV- plus SPMV-infected (PMV/SPMV) plants revealed enhanced levels of multiple defense-related hormones and metabolites such as cinnamic acid, SA, and fatty acids and lignin precursors during disease progression.

View Article and Find Full Text PDF

A major bottleneck in identifying therapies to control citrus greening and other devastating plant diseases caused by fastidious pathogens is our inability to culture the pathogens in defined media or axenic cultures. As such, conventional approaches for antimicrobial evaluation (genetic or chemical) rely on time-consuming, low-throughput and inherently variable whole-plant assays. Here, we report that plant hairy roots support the growth of fastidious pathogens like Candidatus Liberibacter spp.

View Article and Find Full Text PDF

Candidatus Liberibacter asiaticus (CLas) has been associated with Huanglongbing, a lethal vector-borne disease affecting citrus crops worldwide. While comparative genomics has provided preliminary insights into the metabolic capabilities of this uncultured microorganism, a comprehensive functional characterization is currently lacking. Here, we reconstructed and manually curated genome-scale metabolic models for the six CLas strains A4, FL17, gxpsy, Ishi-1, psy62, and YCPsy, in addition to a model of the closest related culturable microorganism, L.

View Article and Find Full Text PDF

Alternative splicing (AS) promotes transcriptome and proteome diversity during growth, development, and stress responses in eukaryotes. Genome-wide studies of AS in sugarcane (Saccharum spp.) are lacking, mainly due to the absence of a high-quality sequenced reference genome, sugarcane's large, complex genome, and the variable chromosome numbers and polyploidy of sugarcane cultivars.

View Article and Find Full Text PDF

Sugarcane and energycane ( spp. hybrids) are prominent sources of sugar, ethanol, as well as high-value bioproducts globally. Genetic analysis for trait improvement of sugarcane is greatly hindered by its complex genome, limited germplasm resources, long breeding cycle, as well as recalcitrance to genetic transformation.

View Article and Find Full Text PDF

The genus represents a model system that is advancing our knowledge of the biology of grasses, including small grains, in the postgenomics era. The most widely used species, , is a C plant that is distributed worldwide. has a small genome, short life cycle, and small stature and is amenable to genetic transformation.

View Article and Find Full Text PDF

Alternative splicing (AS) promotes transcriptome and proteome diversity in plants, which influences growth and development, and host responses to stress. Advancements in next-generation sequencing, bioinformatics, and computational biology tools have allowed biologists to investigate AS landscapes on a genome-wide scale in several plant species. Furthermore, the development of Brachypodium distachyon (Brachypodium) as a model system for grasses has facilitated comparative studies of AS within the Poaceae.

View Article and Find Full Text PDF

The Arabidopsis phosphate transporter PHT4;1 was previously localized to the chloroplast thylakoid membrane. Here we investigated the physiological consequences of the absence of PHT4;1 for photosynthesis and plant growth. In standard growth conditions, two independent Arabidopsis knockout mutant lines displayed significantly reduced leaf size and biomass but normal phosphorus content.

View Article and Find Full Text PDF

Despite variable and often scarce supplies of inorganic phosphate (Pi) from soils, plants must distribute appropriate amounts of Pi to each cell and subcellular compartment to sustain essential metabolic activities. The ability to monitor Pi dynamics with subcellular resolution in live plants is, therefore, critical for understanding how this essential nutrient is acquired, mobilized, recycled, and stored. Fluorescence indicator protein for inorganic phosphate (FLIPPi) sensors are genetically encoded fluorescence resonance energy transfer-based sensors that have been used to monitor Pi dynamics in cultured animal cells.

View Article and Find Full Text PDF

Nonphotosynthetic plastids are important sites for the biosynthesis of starch, fatty acids, and amino acids. The uptake and subsequent use of cytosolic ATP to fuel these and other anabolic processes would lead to the accumulation of inorganic phosphate (Pi) if not balanced by a Pi export activity. However, the identity of the transporter(s) responsible for Pi export is unclear.

View Article and Find Full Text PDF

Plastids rely on multiple phosphate (Pi) transport activities to support and control a wide range of metabolic processes, including photosynthesis and carbon partitioning. Five of the six members of the PHT4 family of Pi transporters in Arabidopsis thaliana (PHT4;1-PHT4;5) are confirmed or predicted plastid proteins. As a step towards identifying the roles of individual PHT4 Pi transporters in chloroplast and non-photosynthetic plastid Pi dynamics, we used promoter-reporter gene fusions and quantitative RT-PCR studies, respectively, to determine spatial and diurnal gene expression patterns.

View Article and Find Full Text PDF