Osmotic stress can be detrimental to plants, whose survival relies heavily on proteomic plasticity. Protein ubiquitination is a central post-translational modification in osmotic-mediated stress. In this study, we used the K-Ɛ-GG antibody enrichment method integrated with high-resolution mass spectrometry to compile a list of 719 ubiquitinated lysine (K-Ub) residues from 450 Arabidopsis root membrane proteins (58% of which are transmembrane proteins), thereby adding to the database of ubiquitinated substrates in plants.
View Article and Find Full Text PDFIron-sulfur (Fe-S) clusters are one of the most ancient and ubiquitous prosthetic groups, and they are required by a variety of proteins involved in important metabolic processes. Apicomplexan parasites have inherited different plastidic and mitochondrial Fe-S clusters biosynthesis pathways through endosymbiosis. We have investigated the relative contributions of these pathways to the fitness of Toxoplasma gondii, an apicomplexan parasite causing disease in humans, by generating specific mutants.
View Article and Find Full Text PDFBesides the direct effects of radiations, indirect effects are observed within the surrounding non-irradiated area; irradiated cells relay stress signals in this close proximity, inducing the so-called radiation-induced bystander effect. These signals received by neighboring unirradiated cells induce specific responses similar with those of direct irradiated cells. To understand the cellular response of bystander cells, we performed a 2D gel-based proteomic study of the chondrocytes receiving the conditioned medium of low-dose irradiated chondrosarcoma cells.
View Article and Find Full Text PDFIn Arabidopsis thaliana, NRT2.1 codes for a main component of the root nitrate high-affinity transport system. Previous studies revealed that post-translational regulation of NRT2.
View Article and Find Full Text PDFIn contrast to desiccation-tolerant 'orthodox' seeds, so-called 'intermediate' seeds cannot survive complete drying and are short-lived. All species of the genus Coffea produce intermediate seeds, but they show a considerable variability in seed desiccation tolerance (DT), which may help to decipher the molecular basis of seed DT in plants. We performed a comparative transcriptome analysis of developing seeds in three coffee species with contrasting desiccation tolerance.
View Article and Find Full Text PDFEthylene regulates fruit ripening and several plant functions (germination, plant growth, plant-microbe interactions). Protein quantification of ethylene receptors (ETRs) is essential to study their functions, but is impaired by low resolution tools such as antibodies that are mostly nonspecific, or the lack of sensitivity of shotgun proteomic approaches. We developed a targeted proteomic method, to quantify low-abundance proteins such as ETRs, and coupled this to mRNAs analyses, in two tomato lines: Wild Type (WT) and Never-Ripe (NR) which is insensitive to ethylene because of a gain-of-function mutation in ETR3.
View Article and Find Full Text PDFPIP1;2 and PIP2;1 are aquaporins that are highly expressed in roots and bring a major contribution to root water transport and its regulation by hormonal and abiotic factors. Interactions between cellular proteins or with other macromolecules contribute to forming molecular machines. Proteins that molecularly interact with PIP1;2 and PIP2;1 were searched to get new insights into regulatory mechanisms of root water transport.
View Article and Find Full Text PDFEndogenous stress represents a major source of genome instability, but is in essence difficult to apprehend. Incorporation of labeled radionuclides into DNA constitutes a tractable model to analyze cellular responses to endogenous attacks. Here we show that incorporation of [(3)H]thymidine into CHO cells generates oxidative-induced mutagenesis, but, with a peak at low doses.
View Article and Find Full Text PDFAntigen Ki-67 is a nuclear protein expressed in proliferating mammalian cells. It is widely used in cancer histopathology but its functions remain unclear. Here, we show that Ki-67 controls heterochromatin organisation.
View Article and Find Full Text PDFMaize was genetically engineered for the biosynthesis of the high value carotenoid astaxanthin in the kernel endosperm. Introduction of a β-carotene hydroxylase and a β-carotene ketolase into a white maize genetic background extended the carotenoid pathway to astaxanthin. Simultaneously, phytoene synthase, the controlling enzyme of carotenogenesis, was over-expressed for enhanced carotenoid production and lycopene ε-cyclase was knocked-down to direct more precursors into the β-branch of the extended ketocarotenoid pathway which ends with astaxanthin.
View Article and Find Full Text PDFNutritional symbiotic interactions require the housing of large numbers of microbial symbionts, which produce essential compounds for the growth of the host. In the legume-rhizobium nitrogen-fixing symbiosis, thousands of rhizobium microsymbionts, called bacteroids, are confined intracellularly within highly specialized symbiotic host cells. In Inverted Repeat-Lacking Clade (IRLC) legumes such as Medicago spp.
View Article and Find Full Text PDFThe unicellular pathogenic protozoan Trypanosoma brucei gambiense is responsible for the chronic form of sleeping sickness. This vector-borne disease is transmitted to humans by the tsetse fly of the group Glossina palpalis, including the subspecies G. p.
View Article and Find Full Text PDFThe aim of this study was to assess whether endosperm-specific carotenoid biosynthesis influenced core metabolic processes in maize embryo and endosperm and how global seed metabolism adapted to this expanded biosynthetic capacity. Although enhancement of carotenoid biosynthesis was targeted to the endosperm of maize kernels, a concurrent up-regulation of sterol and fatty acid biosynthesis in the embryo was measured. Targeted terpenoid analysis, and non-targeted metabolomic, proteomic, and transcriptomic profiling revealed changes especially in carbohydrate metabolism in the transgenic line.
View Article and Find Full Text PDFWe investigated the molecular mechanisms for in-frame skipping of DMD exon 39 caused by the nonsense c.5480T>A mutation in a patient with Becker muscular dystrophy. RNase-assisted pull down assay coupled with mass spectrometry revealed that the mutant RNA probe specifically recruits hnRNPA1, hnRNPA2/B1 and DAZAP1.
View Article and Find Full Text PDFThe hydraulic conductivity of plant roots (Lp(r)) is determined in large part by the activity of aquaporins. Mechanisms occurring at the post-translational level, in particular phosphorylation of aquaporins of the plasma membrane intrinsic protein 2 (PIP2) subfamily, are thought to be of critical importance for regulating root water transport. However, knowledge of protein kinases and phosphatases acting on aquaporin function is still scarce.
View Article and Find Full Text PDFDuring its life cycle, the protozoan pathogen Leishmania donovani is exposed to contrasting environments inside insect vector and vertebrate host, to which the parasite must adapt for extra- and intracellular survival. Combining null mutant analysis with phosphorylation site-specific mutagenesis and functional complementation we genetically tested the requirement of the L. donovani chaperone cyclophilin 40 (LdCyP40) for infection.
View Article and Find Full Text PDFAn excess of NaCl in the soil is detrimental for plant growth. It interferes with mineral nutrition and water uptake and leads to accumulation of toxic ions in the plant. Understanding the response of roots to NaCl stress may facilitate the development of crops with increased tolerance to this and other stresses.
View Article and Find Full Text PDFInvasive pulmonary aspergillosis remains a matter of great concern in oncology/haematology, intensive care units and organ transplantation departments. Despite the availability of various diagnostic tools with attractive features, new markers of infection are required for better medical care. We therefore looked for potential pulmonary biomarkers of aspergillosis, by carrying out two-dimensional (2D) gel electrophoresis comparing the proteomes of bronchial-alveolar lavage fluids (BALF) from infected rats and from control rats presenting non-specific inflammation, both immunocompromised.
View Article and Find Full Text PDFIn plants, aquaporins play a crucial role in regulating root water transport in response to environmental and physiological cues. Controls achieved at the post-translational level are thought to be of critical importance for regulating aquaporin function. To investigate the general molecular mechanisms involved, we performed, using the model species Arabidopsis, a comprehensive proteomic analysis of root aquaporins in a large set of physiological contexts.
View Article and Find Full Text PDFRennet-induced coagulation of bovine milk is a complex mechanism in which chymosin specifically hydrolyzes κ-casein, the protein responsible for the stability of the casein micelle. In equine milk, this mechanism is still unclear, and the protein targets of chymosin are unknown. To reveal the proteins involved, the rennetability of equine milk by calf chymosin was examined using gel-free and gel-based proteomic analysis and compared to bovine milk.
View Article and Find Full Text PDFBackground: Genome-wide statistics established that long intrinsically disordered regions (over 30 residues) are predicted in a large part of proteins in all eukaryotes, with a higher ratio in trans-membrane proteins. At functional level, such unstructured and flexible regions were suggested for years to favour phosphorylation events. In plants, despite increasing evidence of the regulation of transport and signalling processes by phosphorylation events, only few data are available without specific information regarding plasma membrane proteins, especially at proteome scale.
View Article and Find Full Text PDFSecreted proteins play a key role in cell signaling and communication. We recently showed that ionizing radiations induced a delayed cell death of breast cancer cells, mediated by the death receptor pathways through the expression of soluble forms of "death ligands." Using the same cell model, the objective of our work was the identification of diffusible factors, secreted following cell irradiation, potentially involved in cell death signaling.
View Article and Find Full Text PDF