Publications by authors named "Sonia Garcia-Ruiz"

Article Synopsis
  • Mutations in a specific gene are linked to Gaucher disease and significantly increase the risk for Parkinson's disease, but studying this gene is challenging due to its similar pseudogene.
  • By using long-read RNA sequencing, researchers were able to differentiate and quantify expression levels between the gene and its pseudogene, finding previously unrecognized transcripts.
  • The study revealed that many transcripts from both genes do not have the known lysosomal functions, indicating they may have other roles in the brain, which could change how we understand their impact on health and disease.
View Article and Find Full Text PDF

To discover rare disease-gene associations, we developed a gene burden analytical framework and applied it to rare, protein-coding variants from whole genome sequencing of 35,008 cases with rare diseases and their family members recruited to the 100,000 Genomes Project (100KGP). Following triaging of the results, 88 novel associations were identified including 38 with existing experimental evidence. We have published the confirmation of one of these associations, hereditary ataxia with , and independent confirmatory evidence has recently been published for four more.

View Article and Find Full Text PDF

We present ensemblQueryR, an R package for querying Ensembl linkage disequilibrium (LD) endpoints. This package is flexible, fast and user-friendly, and optimised for high-throughput querying. ensemblQueryR uses functions that are intuitive and amenable to custom code integration, familiar R object types as inputs and outputs as well as providing parallelisation functionality.

View Article and Find Full Text PDF

Amazon Simple Storage Service (Amazon S3) is a widely used platform for storing large biomedical datasets. Unintended data alterations can occur during data writing and transmission, altering the original content and generating unexpected results. However, no open-source and easy-to-use tool exists to verify end-to-end data integrity.

View Article and Find Full Text PDF
Article Synopsis
  • Genome-wide association studies have identified genetic variants linked to Parkinson's disease, but the mechanisms behind these variants are still unclear.
  • The study focuses on two genes, KAT8 and KANSL1, part of a non-specific lethal complex involved in gene regulation, both in the nucleus and mitochondria.
  • Researchers found that the expression of this complex correlates with genes associated with Parkinson's in various brain regions, suggesting significant involvement in the disease's biological pathways.
View Article and Find Full Text PDF
Article Synopsis
  • Improvements in functional genomic annotation have accelerated neurogenetic discoveries, particularly in hereditary ataxia, which involves over 300 genes but still leaves 75% of patients undiagnosed even with advanced sequencing techniques.
  • The study aimed to enhance understanding of hereditary ataxia's genetic architecture by employing multi-omics data to create 294 genic features related to gene characteristics and expression patterns.
  • The findings revealed a notable density of short tandem repeats (STRs) in childhood-onset genes, suggesting pathogenic repeat expansions may be overlooked and indicating a potential link between STRs and ataxia development.
View Article and Find Full Text PDF

Dysregulation of RNA splicing contributes to both rare and complex diseases. RNA-sequencing data from human tissues has shown that this process can be inaccurate, resulting in the presence of novel introns detected at low frequency across samples and within an individual. To enable the full spectrum of intron use to be explored, we have developed IntroVerse, which offers an extensive catalogue on the splicing of 332,571 annotated introns and a linked set of 4,679,474 novel junctions covering 32,669 different genes.

View Article and Find Full Text PDF

Motivation: The advent of long-read sequencing technologies has increased demand for the visualization and interpretation of transcripts. However, tools that perform such visualizations remain inflexible and lack the ability to easily identify differences between transcript structures. Here, we introduce ggtranscript, an R package that provides a fast and flexible method to visualize and compare transcripts.

View Article and Find Full Text PDF

There is growing evidence for the importance of 3' untranslated region (3'UTR) dependent regulatory processes. However, our current human 3'UTR catalogue is incomplete. Here, we develop a machine learning-based framework, leveraging both genomic and tissue-specific transcriptomic features to predict previously unannotated 3'UTRs.

View Article and Find Full Text PDF

Mitochondrial dysfunction contributes to the pathogenesis of many neurodegenerative diseases. The mitochondrial genome encodes core respiratory chain proteins, but the vast majority of mitochondrial proteins are nuclear-encoded, making interactions between the two genomes vital for cell function. Here, we examine these relationships by comparing mitochondrial and nuclear gene expression across different regions of the human brain in healthy and disease cohorts.

View Article and Find Full Text PDF

Argininosuccinate lyase (ASL) is essential for the NO-dependent regulation of tyrosine hydroxylase (TH) and thus for catecholamine production. Using a conditional mouse model with loss of ASL in catecholamine neurons, we demonstrate that ASL is expressed in dopaminergic neurons in the substantia nigra pars compacta, including the ALDH1A1 subpopulation that is pivotal for the pathogenesis of Parkinson disease (PD). Neuronal loss of ASL results in catecholamine deficiency, in accumulation and formation of tyrosine aggregates, in elevation of α-synuclein, and phenotypically in motor and cognitive deficits.

View Article and Find Full Text PDF

Neuropathological and experimental evidence suggests that the cell-to-cell transfer of α-synuclein has an important role in the pathogenesis of Parkinson's disease (PD). However, the mechanism underlying this phenomenon is not fully understood. We undertook a small interfering RNA (siRNA), genome-wide screen to identify genes regulating the cell-to-cell transfer of α-synuclein.

View Article and Find Full Text PDF

Knowledge of genomic features specific to the human lineage may provide insights into brain-related diseases. We leverage high-depth whole genome sequencing data to generate a combined annotation identifying regions simultaneously depleted for genetic variation (constrained regions) and poorly conserved across primates. We propose that these constrained, non-conserved regions (CNCRs) have been subject to human-specific purifying selection and are enriched for brain-specific elements.

View Article and Find Full Text PDF

Motivation: Co-expression networks are a powerful gene expression analysis method to study how genes co-express together in clusters with functional coherence that usually resemble specific cell type behavior for the genes involved. They can be applied to bulk-tissue gene expression profiling and assign function, and usually cell type specificity, to a high percentage of the gene pool used to construct the network. One of the limitations of this method is that each gene is predicted to play a role in a specific set of coherent functions in a single cell type (i.

View Article and Find Full Text PDF

Gene co-expression networks are a powerful type of analysis to construct gene groupings based on transcriptomic profiling. Co-expression networks make it possible to discover modules of genes whose mRNA levels are highly correlated across samples. Subsequent annotation of modules often reveals biological functions and/or evidence of cellular specificity for cell types implicated in the tissue being studied.

View Article and Find Full Text PDF

Growing evidence suggests that human gene annotation remains incomplete; however, it is unclear how this affects different tissues and our understanding of different disorders. Here, we detect previously unannotated transcription from Genotype-Tissue Expression RNA sequencing data across 41 human tissues. We connect this unannotated transcription to known genes, confirming that human gene annotation remains incomplete, even among well-studied genes including 63% of the Online Mendelian Inheritance in Man-morbid catalog and 317 neurodegeneration-associated genes.

View Article and Find Full Text PDF

Dystonia is a neurological disorder characterized by sustained or intermittent muscle contractions causing abnormal movements and postures, often occurring in absence of any structural brain abnormality. Psychiatric comorbidities, including anxiety, depression, obsessive-compulsive disorder and schizophrenia, are frequent in patients with dystonia. While mutations in a fast-growing number of genes have been linked to Mendelian forms of dystonia, the cellular, anatomical, and molecular basis remains unknown for most genetic forms of dystonia, as does its genetic and biological relationship to neuropsychiatric disorders.

View Article and Find Full Text PDF