TDP-43 pathology is a disease hallmark that characterizes both amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP). TDP-43 undergoes several posttranslational modifications that can change its biological activities and its aggregative propensity, which is a common hallmark of different neurodegenerative conditions. New evidence is provided by the current study pointing at TDP-43 acetylation in ALS cellular models.
View Article and Find Full Text PDFNeurodegenerative disorders, including Amyotrophic Lateral Sclerosis (ALS), have been associated to alterations in chromatin structure resulting in long-lasting changes in gene expression. ALS is predominantly a sporadic disease and environmental triggers may be involved in its onset. In this respect, alterations in the epigenome can provide the key to transform the genetic information into phenotype.
View Article and Find Full Text PDFMutations in LRRK2 play a critical role in both familial and sporadic Parkinson's disease (PD). Up to date, the role of LRRK2 in PD onset and progression remains largely unknown. However, experimental evidence highlights a critical role of LRRK2 in the control of vesicle trafficking that in turn may regulate different aspects of neuronal physiology.
View Article and Find Full Text PDFRedox processes are key events in the degenerative cascade of many adult-onset neurodegenerative diseases (NDs), but the biological relevance of a single redox change is often dependent on the redox couple involved and on its subcellular origin. The biosensors based on engineered fluorescent proteins (redox-sensitive GFP [roGFP]) offer a unique opportunity to monitor redox changes in both physiological and pathological contexts in living animals and plants. Here, we review the use of roGFPs to monitor oxidative stress in different three adult-onset NDs: Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS).
View Article and Find Full Text PDFExpression of mutant SOD1 typical of familial amyotrophic lateral sclerosis (ALS) induces the expression of Bcl2-A1, a member of the Bcl2 family of proteins, specifically in motor neurons of transgenic mice. In this work, we have used immortalized motor neurons (NSC-34) and transgenic mice expressing mutant SOD1 to unravel the molecular mechanisms and the biological meaning of this up-regulation. We report that up-regulation of Bcl2-A1 by mutant SOD1 is mediated by activation of the redox sensitive transcription factor AP1 and that Bcl2-A1 interacts with pro-caspase-3 via its C-terminal helix α9.
View Article and Find Full Text PDF