Athletes increasingly engage in repeated sprint training consisting in repeated short all-out efforts interspersed by short recoveries. When performed in hypoxia (RSH), it may lead to greater training effects than in normoxia (RSN); however, the underlying molecular mechanisms remain unclear. This study aimed at elucidating the effects of RSH on skeletal muscle metabolic adaptations as compared to RSN.
View Article and Find Full Text PDFTo investigate the influence of different metabolic muscle fiber profiles on the emergence of the slow component of oxygen uptake ([Formula: see text]), 12 habitually active males completed four sessions of different combinations of work-to-work transition exercises up to severe intensity. Each transition was modeled to analyze the different kinetic parameters. Using a new approach, combining Henneman's principle and superposition principle, a reconstructed kinetics was built by temporally aligning the start of each new transition and summing them.
View Article and Find Full Text PDFTo assess if the alteration of neuromuscular properties of knee extensors muscles during heavy exercise co-vary with the SCV ([Formula: see text] slow component), eleven healthy male participants completed an incremental ramp test to exhaustion and five constant heavy intensity cycling bouts of 2, 6, 10, 20 and 30 minutes. Neuromuscular testing of the knee extensor muscles were completed before and after exercise. Results showed a significant decline in maximal voluntary contraction (MVC) torque only after 30 minutes of exercise (-17.
View Article and Find Full Text PDFBackground: Human skeletal muscle is composed of a functional and metabolic continuum of slow (Type I) and fast fibers (IIa and IIx). Hybrid fibers co-expressing different myosin heavy chains are also present and seem to be more prominent in aging muscle. Their role is debated; hybrid fibers were reported either in a transitional state, between slow and fast fibers, or as fixed individual entities.
View Article and Find Full Text PDFObjective: Research findings on the relationship between serum androgens and adipose tissue in older females are inconsistent. We aimed to clarify the relationship using state-of-the-art techniques to evaluate associations between body fat distribution and plasma testosterone (T) levels in older postmenopausal women.
Design: Observational, cross-sectional study of healthy, community dwelling postmenopausal women.
Aim: Healthy ageing interventions encompass regular exercise to prevent mitochondrial dysfunction, key player in sarcopenia pathogenesis. Mitochondrial biogenesis has been well documented, but mitochondrial remodelling in response to exercise training is poorly understood. Here we investigated fusion, fission and mitophagy before and after an exercise intervention in older adults.
View Article and Find Full Text PDFMitochondrial dysfunction is a hallmark of multiple metabolic complications. Physical activity is known to increase mitochondrial content in skeletal muscle, counteracting age-related decline in muscle function and protecting against metabolic and cardiovascular complications. Here, we investigated the effect of 4 months of exercise training on skeletal muscle mitochondria electron transport chain complexes and supercomplexes in 26 healthy, sedentary older adults.
View Article and Find Full Text PDF