Publications by authors named "Sonia Chamizo"

Low restoration success in degraded drylands has promoted research efforts towards recovery of pioneer components of these ecosystems such as biocrusts. Biocrusts can stabilize soils and improve nutrient cycling to assist vegetation establishment, but their natural recovery following a disturbance may be very slow. Soil inoculation with biocrust-forming components such as cyanobacteria is widely spread to foster biocrust formation.

View Article and Find Full Text PDF

Soil contamination by heavy metals represents an important environmental and public health problem of global concern. Biocrust-forming cyanobacteria offer promise for heavy metal immobilisation in contaminated soils due to their unique characteristics, including their ability to grow in contaminated soils and produce exopolysaccharides (EPS). However, limited research has analysed the representativeness of cyanobacteria in metal-contaminated soils.

View Article and Find Full Text PDF

Links between water and carbon (C) cycles in drylands are strongly regulated by biocrusts. These widespread communities in the intershrub spaces of drylands are able to use non-rainfall water inputs (NRWI) (fog, dewfall and water vapour) to become active and fix carbon dioxide (CO), converting biocrusts into the main soil C contributors during periods in which vegetation remains inactive. In this study, we first evaluated the influence of biocrust type on NRWI uptake using automated microlysimeters, and second, we performed an outdoor experiment to examine how NRWI affected C exchange (photosynthesis and respiration) in biocrusts.

View Article and Find Full Text PDF

Land degradation in drylands is a drawback of the combined action of climate change and human activities. New techniques have been developed to induce artificial biocrusts formation as a tool for restoration of degraded drylands, and among them soils inoculation with cyanobacteria adapted to environmental stress. Improvement of soil properties by cyanobacteria inoculation is largely related to their ability to synthesize exopolysaccharides (EPS).

View Article and Find Full Text PDF

Cyanobacteria are key microbes in topsoil communities that have important roles in preventing soil erosion, carbon and nitrogen fixation, and influencing soil hydrology. However, little is known regarding the identity and distribution of the microbial components in the photosynthetic assemblages that form a cohesive biological soil crust (biocrust) in drylands of Europe. In this study, we investigated the cyanobacterial species colonizing biocrusts in three representative dryland ecosystems from the most arid region in Europe (SE Spain) that are characterized by different soil conditions.

View Article and Find Full Text PDF
Article Synopsis
  • Inoculation of soils with cyanobacteria can help restore degraded drylands by utilizing their exopolysaccharides (EPS), but research on their chemical properties has been limited, particularly outside sandy soils.
  • The study explored two cyanobacterial species, Phormidium ambiguum (non N-fixing) and Scytonema javanicum (N-fixing), to understand how they impact the EPS composition across different soil types.
  • Findings revealed that S. javanicum releases more soluble EPS, while P. ambiguum contributes to more condensed EPS, with both types exhibiting varied monosaccharide compositions influenced by soil organic carbon content.
View Article and Find Full Text PDF