The photothermal use of iron oxide magnetic nanoparticles (NPs) is becoming more and more popular and documented. Herein, we compared the photothermal (PT) therapy potential versus magnetic hyperthermia (MHT) modality of magnetic nanospheres, largely used in the biomedical field and magnetic multicore nanoflowers known among the best nanoheaters. The NPs were imaged using transmission electron microscopy and their optical properties characterized by UV-Vis-NIR-I-II before oxidation (magnetite) and after oxidation to maghemite.
View Article and Find Full Text PDFInnovative synthesis routes revolutionized nanomaterial combination and design possibilities resulting in a new generation of fine-tuned nanoparticles featuring exquisite shape and constitution control. However, there is still room for improvement when it comes to the development of multi-functional nanoparticle agents merging a plurality of therapeutic functions to tackle tumors simultaneously by synergic mechanisms. Herein, we report the design of an optimized nanohybrid for cancer tri-therapy featuring a maghemite (γ-Fe2O3) nanoflower-like multicore nanoparticle conceived for efficient magnetic hyperthermia (MHT) and a spiky copper sulfide shell (IONF@CuS) with a high near-infrared (NIR) absorption coefficient suitable for photothermal (PTT) and photodynamic therapy (PDT).
View Article and Find Full Text PDFMagnetic hyperthermia which exploits the heat generated by magnetic nanoparticles (MNPs) when exposed to an alternative magnetic field (AMF) is now in clinical trials for the treatment of cancers. However, this thermal therapy requires a high amount of MNPs in the tumor to be efficient. On the contrary the hot spot local effect refers to the use of specific temperature profile at the vicinity of nanoparticles for heating with minor to no long-range effect.
View Article and Find Full Text PDFDespite their highly efficient plasmonic properties, gold nanoparticles are currently preferred to silver nanoparticles for biomedical applications such as photothermal therapy due to their high chemical stability in the biological environment. To confer protection while preserving their plasmonic properties, we allied the advantages of both materials and produced hybrid nanoparticles made of an anisotropic silver nanoplate core coated with a frame of gold. The efficiency of these hybrid nanoparticles (Ag@AuNPs) in photothermia was compared to monometallic silver nanoplates (AgNPs) or gold nanostars (AuNPs).
View Article and Find Full Text PDF