KRAS is the most frequently mutated oncogene associated with the genesis and progress of pancreatic, lung and colorectal (CRC) tumors. KRAS has always been considered as a therapeutic target in cancer but until now only two compounds that inhibit one specific KRAS mutation have been approved for clinical use. In this work, by molecular dynamics and a docking process, we describe a new compound (P14B) that stably binds to a druggable pocket near the α4-α5 helices of the allosteric domain of KRAS.
View Article and Find Full Text PDFOncogenic RAS proteins are important for driving tumour formation, and for maintenance of the transformed phenotype, and thus their relevance as a cancer therapeutic target is undeniable. We focused here on obtaining peptidomimetics, which have good pharmacological properties, to block Ras-effector interaction. Computational analysis was used to identify hot spots of RAS relevant for these interactions and to screen a library of peptidomimetics.
View Article and Find Full Text PDFHepatocellular carcinoma is the most frequent primary liver cancer. Macroautophagy/autophagy inhibitors have been extensively studied in cancer but, to date, none has reached efficacy in clinical trials. In this study, we demonstrated that GNS561, a new autophagy inhibitor, whose anticancer activity was previously linked to lysosomal cell death, displayed high liver tropism and potent antitumor activity against a panel of human cancer cell lines and in two hepatocellular carcinoma in vivo models.
View Article and Find Full Text PDFPatients with advanced hepatocellular carcinoma (HCC) or metastatic colorectal cancer (mCRC) have a very poor prognosis due to the lack of efficient treatments. As observed in several other tumors, the effectiveness of treatments is mainly hampered by the presence of a highly tumorigenic sub-population of cancer cells called cancer stem cells (CSCs). Indeed, CSCs are resistant to chemotherapy and radiotherapy and can regenerate the tumor bulk.
View Article and Find Full Text PDFOncogenic mutations of KRAS are found in the most aggressive human tumors, including colorectal cancer. It has been suggested that oncogenic KRAS phosphorylation at Ser181 modulates its activity and favors cell transformation. Using nonphosphorylatable (S181A), phosphomimetic (S181D), and phospho-/dephosphorylatable (S181) oncogenic KRAS mutants, we analyzed the role of this phosphorylation to the maintenance of tumorigenic properties of colorectal cancer cells.
View Article and Find Full Text PDFBackground: Hepatic fibrosis is the result of chronic liver injury that can progress to cirrhosis and lead to liver failure. Nevertheless, there are no anti-fibrotic drugs licensed for human use. Here, we investigated the anti-fibrotic activity of GNS561, a new lysosomotropic molecule with high liver tropism.
View Article and Find Full Text PDFAmong the acquired modifications in cancer cells, changes in lysosomal phenotype and functions are well described, making lysosomes a potential target for novel therapies. Some weak base lipophilic drugs have a particular affinity towards lysosomes, taking benefits from lysosomal trapping to exert anticancer activity. Here, we have developed a new lysosomotropic small molecule, GNS561, and assessed its activity in multiple in vitro intrahepatic cholangiocarcinoma models (HuCCT1 and RBE cell lines and patient-derived cells) and in a chicken chorioallantoic membrane xenograft model.
View Article and Find Full Text PDFWe previously showed that p21Cip1 transits through the nucleolus on its way from the nucleus to the cytoplasm and that DNA damage inhibits this transit and induces the formation of p21Cip1-containing intranucleolar bodies (INoBs). Here, we demonstrate that these INoBs also contain SUMO-1 and UBC9, the E2 SUMO-conjugating enzyme. Furthermore, whereas wild type SUMO-1 localized in INoBs, a SUMO-1 mutant, which is unable to conjugate with proteins, does not, suggesting the presence of SUMOylated proteins at INoBs.
View Article and Find Full Text PDFAim: To evaluate the antiviral potency of a new anti-hepatitis C virus (HCV) antiviral agent targeting the cellular autophagy machinery.
Methods: Non-infected liver slices, obtained from human liver resection and cut in 350 μm-thick slices (2.7 × 10(6) cells per slice) were infected with cell culture-grown HCV Con1b/C3 supernatant (multiplicity of infection = 0.
Background: Host cell proteins, including cellular kinases, are embarked into intact HIV-1 particles. We have previously shown that the Cα catalytic subunit of cAMP-dependent protein kinase is packaged within HIV-1 virions as an enzymatically active form able to phosphorylate a synthetic substrate in vitro (Cartier et al. J.
View Article and Find Full Text PDFAt the end of 2005, an outbreak of fever associated with joint pain occurred in La Réunion. The causal agent, chikungunya virus (CHIKV), has been known for 50 years and could thus be readily identified. This arbovirus is present worldwide, particularly in India, but also in Europe, with new variants returning to Africa.
View Article and Find Full Text PDFVirologie (Montrouge)
August 2011
During the 2005-2006 austral summer, an outbreak of fever associated with joint pain hit the Reunion Island inhabitants. Chikungunya virus (CHIKV), the agent involved in this epidemic, was known since 50 years and was thus brought to general attention together with the risk of emergence or re-emergence of arboviral infections. This arbovirus rapidly spread worldwide, specifically in India with millions of cases, but also in Europe through imported cases (>2,000) and fewautochthonous cases in Italy and in France.
View Article and Find Full Text PDFCapsid protein (CA) is the major component of the human immunodeficiency virus type 1 (HIV-1) core. Three major phosphorylation sites have been identified at positions S(109), S(149) and S(178) in the amino-acid sequence of CA. Here, we investigated the possible consequences of phosphorylation at these sites on the CA hexamer organization and plasticity using in silico approaches.
View Article and Find Full Text PDFp21(cip1) is a protein with a dual function in oncogenesis depending mainly on its intracellular localization: tumor suppressor in the nucleus and oncogenic in the cytoplasm. After DNA damage, p21(cip1) increases and accumulates in the nucleus to ensure cell cycle arrest. We show here that the nuclear accumulation of p21(cip1) is not only a consequence of its increased levels but to a DNA damage cellular response, which is ataxia telangiectasia and Rad3 related (ATR)/ataxia telangiectasia mutated (ATM) and p53 independent.
View Article and Find Full Text PDFNucleic Acids Res
October 2009
Numerous cellular factors belonging to the DNA repair machineries, including RAD18, RAD52, XPB and XPD, have been described to counteract human immunodeficiency virus type 1 (HIV-1) replication. Recently, Uracil DNA glycosylase 2 (UNG2), a major determinant of the uracil base excision repair pathway, was shown to undergo rapid proteasome-dependent degradation following HIV-1 infection. However, the specific role of intracellular UNG2 depletion during the course of HIV-1 infection is not clearly understood.
View Article and Find Full Text PDFBackground: The machinery of early HIV-1 replication still remains to be elucidated. Recently the viral core was reported to persist in the infected cell cytoplasm as an assembled particle, giving rise to the reverse transcription complex responsible for the synthesis of proviral DNA and its transport to the nucleus. Numerous studies have demonstrated that reverse transcription of the HIV-1 genome into proviral DNA is tightly dependent upon proper assembly of the capsid (CA) protein into mature cores that display appropriate stability.
View Article and Find Full Text PDFThe p16(ink4a) tumor suppressor protein plays a critical role in cell cycle control, tumorogenesis and senescence. The best known activity for p16(ink4a) is the inhibition of the activity of CDK4 and CDK6 kinases, both playing a key role in cell cycle progression. With the aim to study new p16(ink4a) functions we used affinity chromatography and MS techniques to identify new p16(ink4a)-interacting proteins.
View Article and Find Full Text PDFIntracellular localization plays an important role in the functional regulation of the cyclin-dependent kinase inhibitor p21. While nuclear functions have been linked to the tumor suppressor activity of p21, cytoplasmatic functions are oncogenic. We have recently shown that Ser153 phosphorylation of p21 by PKC contributes to its cytoplasmatic accumulation, and that this phosphorylation is inhibited by Ca(2+)-dependent calmodulin binding to the C-terminal region of p21.
View Article and Find Full Text PDFIntracellular localization plays an important role in the functional regulation of the cell cycle inhibitor p21. We have previously shown that calmodulin binds to p21 and that calmodulin is essential for the nuclear accumulation of p21. Here, we analyze the mechanism of this regulation.
View Article and Find Full Text PDF