Publications by authors named "Sonia Brodowska"

Cell-based therapies hold promise for novel therapeutic strategies in regenerative medicine. We previously characterized in vitro human umbilical di-chimeric cells (HUDCs) created via the ex vivo fusion of human umbilical cord blood (UCB) cells derived from two unrelated donors. In this in vivo study, we assessed HUDC safety and biodistribution in the NOD SCID mouse model at 90 days following the systemic intraosseous administration of HUDCs.

View Article and Find Full Text PDF

Duchenne Muscular Dystrophy (DMD) is a lethal disease caused by mutation in the dystrophin gene. Currently there is no cure for DMD. We introduced a novel human Dystrophin Expressing Chimeric (DEC) cell therapy of myoblast origin and confirmed the safety and efficacy of DEC in the mouse models of DMD.

View Article and Find Full Text PDF

Background: Cell-based therapies are promising for tolerance induction in bone marrow (BM), solid organs, and vascularized composite allotransplantation (VCA). The toxicity of bone marrow transplantation (BMT) protocols precludes this approach from routine clinical applications. To address this problem, we developed a new therapy of Human Umbilical Di-Chimeric (HUDC) cells for tolerance induction in transplantation.

View Article and Find Full Text PDF

Cellular therapies are regarded as the most promising approach for inducing transplant tolerance without life-long immunosuppression in solid organ and vascularized composite allotransplantation (VCA). Currently, no therapies are achieving this goal. This study introduces a novel Human Multi-Chimeric Cell (HMCC) line created by fusion of umbilical cord blood (UCB) cells, from three unrelated donors as an alternative therapeutic approach to bone marrow transplantation and tolerance induction in solid organ and VCA transplants.

View Article and Find Full Text PDF

Background: Cell-based and chimerism-based therapies represent a promising approach for tolerance induction in transplantation. We propose a new cell therapy of the created human hematopoietic chimeric cells (HHCC) as an alternative approach to bone marrow (BM)-based therapies in support of solid organ and vascularized composite allotransplantation (VCA). This study aimed to characterize the phenotype, genotype, clonogenic, and tolerogenic properties of HHCC.

View Article and Find Full Text PDF

Background:  Different types of nerve conduits are used to bridge peripheral nerve gaps when a tension-free repair is unattainable. To best support nerve regeneration, naturally occurring conduits have been tested. Since allografts offer an unlimited source of epineurium, we have developed human epineural conduit (hEC) as a novel technology to bridge nerve gaps.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a lethal disease caused by X-linked mutations in the dystrophin gene. Dystrophin deficiency results in progressive degeneration of cardiac, respiratory and skeletal muscles leading to premature death due to cardiopulmonary complications. Currently, no cure exists for DMD.

View Article and Find Full Text PDF

Duchenne Muscular Dystrophy (DMD) is a lethal disease caused by mutations in dystrophin encoding gene, causing progressive degeneration of cardiac, respiratory, and skeletal muscles leading to premature death due to cardiac and respiratory failure. Currently, there is no cure for DMD. Therefore, novel therapeutic approaches are needed for DMD patients.

View Article and Find Full Text PDF

Human primary cell cultures are among the most challenging procedures in cellular biology laboratory practice. Myoblasts-progenitor of skeletal muscle origin represent a promising therapeutic cell source since the procedure of their isolation is not technically demanding, and the culture is relatively straightforward. Myoblasts could be considered as the candidates for clinical applications due to their regenerative potential, and as the carriers of therapeutic proteins introduced through genetic modifications.

View Article and Find Full Text PDF

Various therapeutic methods have been suggested to enhance nerve regeneration. In this study, we propose a novel approach for enhancement of nerve gap regeneration by applying human epineural conduit (hEC) supported with human mesenchymal stem cells (hMSC), as an alternative to autograft repair. Restoration of 20 mm sciatic nerve defect with hEC created from human sciatic nerve supported with hMSC was tested in 4 experimental groups (n = 6 each) in the athymic nude rat model (Crl:NIH-Foxn1): 1 - No repair control, 2 - Autograft control, 3 - Matched diameter hEC filled with 1 mL saline, 4 - Matched diameter hEC supported with 3 × 10 hMSC.

View Article and Find Full Text PDF